
Publication Date: 15 May 2024
Archs Sci. (2024) Volume 74, Issue 2 Pages 7-14, Paper ID 2024202.
https://doi.org/10.62227/as/74202

Computer Algorithm Design and Linearity Analysis of Its Data
Structures
Zhenhao Li1,*, Fengyun Zhang1 and Hang Lei1
1School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.

Corresponding authors: (e-mail: zhenhaoliuestc@163.com).

Abstract Linearity optimization of data structure is in an important position in the design of computer algorithms, and the
study of its optimization measures and strategies can help to promote the research of computer algorithms in depth. This paper
introduces the multithreading technology, designs a multithreaded inverted sorted cited table on the basis of the data chain
table structure, and prunes and optimizes the data in the table and its distribution repetitions, and puts forward the linearity
optimization strategy. And the GaBP parallel computer algorithm for banded linear equations is designed by combining this
strategy. The linearity analysis of the optimized data structure reveals that the linearity is significantly improved, and the overall
linearity is smooth and reasonably skewed. In the calculation of large-scale numerical values, the running time of the Partition
number of 30 is only 3756.9 s. The average linear solution speed is only 0.063 s when solving the satisfiable SAT instances,
which is 4.631 s less than that of the Minisat algorithm, and the optimization strategy of the data structure linearity proposed
in this paper provides a reference scheme to accelerate the speed of computer algorithms in solving the difficult problems, and
the design of the computer parallel algorithm provides a reference scheme to accelerate the speed of computer algorithms in
solving the difficult problems. The designed computer parallel algorithm provides an effective method for the field of large-scale
numerical processing and SAT problem solving.

Index Terms linearity, inverted index table, multithreading, data structure, algorithm
design

I. Introduction

The process of computer work is essentially the operation
of algorithms, which are made up by human beings,

and the algorithms together with the data structures make up
the program. Therefore, when performing real-world problem
solving, there may be several ready-made algorithms, and the
optimal algorithm must be found, and in this process, the user
is confronted with an algorithmic analysis problem [1], [2].

The complexity of algorithms includes the time complexity
and space complexity, the time complexity refers to the algo-
rithms need to spend more time in the process of arithmetic,
and the space complexity refers to the size of the storage space
that the algorithm needs to occupy [3], [4]. In terms of oper-
ational efficiency, it is mainly constrained by the resources of
both workload and space, and the complexity of the algorithm
leads to the difficulty of the operational work, so it is neces-
sary to reduce the complexity of the algorithm. At the same
time, whether the propagation and accumulation of errors are
restricted is an important criterion for measuring the stability
of the algorithm, in the actual data processing, because the
approximations are not considered accurate, so the calculation
may be subject to the limitation of the effective number of bits,
when determining the algorithm, it is necessary to consider
the algorithm in the process of calculation of each step and

each process will produce the running error, to ensure that
the results of the calculation have practical significance. For
practical and specific problems, through the analysis of the
unified problem, to determine whether there is an optimal
solution to this problem, usually by using the average traits
of this algorithm [5], [6]. If there are some more complex
problems among the algorithms, it is more difficult to find the
optimal algorithm, so it is necessary to analyze the average
trait and the worst condition of the algorithm in a unified
way. In addition to this, it is necessary to consider a series
of analysis of the problem of self-adaptation of the algorithm,
the problem of realizing constraints, the problem of subtlety
and simplicity, and the problem of proof of correctness [7].

As an important means and tool for solving complex sys-
tem problems, computers are widely used in the fields of
mechanical and electronic engineering, etc. However, in the
context of the rapid development of the Internet industry,
people pay more attention to the results of the program, and
pay less attention to the embodiment of discretization in the
design of computer algorithms and data structures. However,
as a discrete structure, digital electronic computer can be
regarded as an abstract problem of computer, and all its related
problems have discrete performance. Therefore, this study
investigates the discrete nature of algorithm design and data

7

Li et al.: Computer Algorithm Design and Linearity Analysis of Its Data Structures

structure in depth, so as to establish the technical thinking
from continuous to discrete [8], [9].

With the continuous development of information technol-
ogy, among computer science, algorithms, as a problem to
be solved, are carefully organized to better define a set of
rules and qualities, and the analysis of algorithms is a very
important content among program design [10]. Wang, F dis-
cusses the application of computer parallel algorithms and
related researches under the background of cloud computing,
and through simulation experiments, confirms the proposed
parallel algorithms’ applicability in cloud computing plat-
forms, and proposes the direction of attack for future parallel
algorithm design, i.e., the acceleration ratio and scalability of
the algorithm [11]. Lu, C designs a NMRED algorithm for
active queue management to adapt to the increasing number
of network data transmission concubines, which demonstrates
stable queue management capability and highly efficient link
utilization in simulation test experiments [12]. Taubenfeld,
G introduced the concept and significance of contention-
sensitive data structures, and proposed a general transforma-
tion method around contention-sensitive data structures, and
introduced it into the design of consensus algorithms, the con-
struction of double-ended queuing data structures and so on to
make arguments to illustrate its superiority [13]. Lao, B et al.
envisioned a fast linear time in-place parallel algorithm named
pSACAK for solving the problem of sorting input strings and
it was found that the proposed algorithm exhibits excellent
sorting efficiency in the application feedback [14]. Feng, D
et al. conceived a transformation algorithm for the purpose
of 3D parallel Delaunay images to the grid and tested it on
a dataset and found that the algorithm helped in expanding
up to 45 distributed memory compute nodes with appropriate
granularity values [15]. Xu, L. J. et al. in a comprehensive
consideration of gold and bitcoin price volatility differences,
price trends, etc., combined with particle algorithms and ge-
netic algorithms to maximize the trading revenue prediction,
the study pointed out that based on the daily price fluctuations
of bitcoin and gold there will be a significant difference in
the prediction, this is due to the difference in the sensitivity
of the transaction of these two assets [16]. Netto, R. et al.
built a legalization algorithm selection model with a deep con-
volutional neural network as the underlying architecture and
tested it in an evaluation framework, comparing the algorithms
running individually, the algorithms run significantly more
efficiently after being screened by the proposed algorithm
selection framework [17].

In this paper, the use of hash function on the index table for
sub "table" processing, and then use multi-threading on the
inverted index data structure optimization, to ensure that there
is no mutual competition for resources in the data structure
of the computer algorithm when running. At the same time,
the inverted index data structure itself and the distribution of
repetitive pruning processing, so that the inverted index data
structure of data values and distribution values are unique,
enhance the linearity of the data structure of the computer
algorithm, optimize the complexity of the computer algorithm.

Finally, this paper uses the optimized inverted index data
structure to design the computer GaBP parallel algorithm, and
explores the effect of the linearity optimization strategy on
the improvement of the linearity of the data structure and its
performance in processing large-scale numerical values. In
addition, an empirical analysis of the parallel algorithm of
this paper is carried out in SAT problem solving, so as to
explore the operation effect of the computer algorithm after
the optimization of the linearity of the data structure.

II. Linearity Optimization Strategies for Computer Data
Structures
A. Multi-Threading Based Inverted Index Table
Construction
Constructing the inverted index table has been an unattended
part of the process, but as a cornerstone data structure in the
overall computer algorithm, its construction process should
be emphasized. In this paper, we use the technique of multi-
threading to accelerate the construction of the inverted index
table and optimize the linearity of the data structure. In the
process of constructing the inverted index, for each different
data, the final data to be obtained is the data and all the
attribute columns where the number of the mapping of the
inverted index, such as (v1, {c1, c2, . . .} . Therefore, in the
process of multi-threaded construction, in order to ensure that
the integrity and correctness of the inverted index of each
V alue value, we must ensure that the same V alue values
are always divided into the same "table". In the same "table".
In this paper, we choose to use the hash function method to
carry out the "table" operation, the hash function is shaped
like h : V → K, where V is the set of values of all the
attribute columns, K is the set of sub-table number. This
also ensures that there will be no competition for resources
between multiple threads, and then use multiple threads to be
responsible for each "bucket" corresponding to the inverted
index table for subsequent optimization, note that at this time
there is no multiple inverted index table not only does not
have any intersection, and there is no order requirements, so
there is no need to do the communication and synchronization
between the threads, better support for the next section of the
lockless The next section of the implementation of lock-free
support. Inverted index table implementation process shown
in Figure 1, parallel construction of inverted index table is the
essence of the hash function, the original entire huge inverted
index table is divided into multiple small tables, the number
of multi-threaded equivalent to the number of.

The algorithm is briefly explained as follows. Line 1 initial-
izes value2attr, representing an array of multiple inverted-
indexed table sub-tables of size number of threads |K|, where
the structure of each inverted-indexed sub-table is a mapping
of type String to collection type. Then enumerate each row
of each table in turn (lines 2-3), and for each row, enumerate
each attribute (line 4), get the value value of the current record
at the current attribute (line 5), and the number of the sub-
table partNo that it should be assigned to under the function
h mapping (line 6), and use the thread numbered partNo to

8

Li et al.: Computer Algorithm Design and Linearity Analysis of Its Data Structures

Figure 1: Inverted index table process

add that mapping to its sub-table (line 7). The module ends up
with the inverted-indexed subtable.

The process is formally expressed as, on database instance
d, D(d) = (U ,V,B), where U denotes the set of attributes,
V denotes the set of fetches, binary relation B ⊆ V × U
denotes the set of binary relations from fetches to attributes,
the number of threads is k, the hash function is h, and S (vi)
is defined to be the set of all attribute columns in which vi is
located, then:

S (vi) = {ui| (vi, ui) ∈ B, ui ∈ U} . (1)

Define the entire inverted index table on d to be I(V,U), then:

I(V,U) = {(vi, S (vi)) |vi ∈ V } . (2)

From the given hash function h, define a subset Vj , j ∈ [1, k]
of the set of values taken, then:

Vj = {vi|h (vi) = j, vi ∈ V } . (3)

It is known at this point:

Vi ∩ Vj = ϕ, ∀i, j ∈ [1, k],⋃
i Vi = V, i ∈ [1, k],

(4)

where J corresponds to a split-table inverted index table
defined as Ij (Vj , U), then:

Ij (Vj , U) = {(vi, S (vi)) |vi ∈ Vj} . (5)

Eventually there is:

Ii (Vi, U) ∩ Ij (Vj , U) = ϕ, ∀i, j ∈ [1, k], (6)⋃
i

Ii (Vi, U) = I(V,U), i ∈ [1, k]. (7)

At this point it clearly proves the correctness of the method
of dividing the inverted index table into multiple smaller tables
using the hash function.

B. Pruning Method Based on Inverted Index Table
1) Data Structure Repeatability Optimization
General inclusion dependency mining algorithms have either
explicitly or implicitly performed a de-duplication (merging)
operation on duplicate data values, which has some signifi-
cance in the practical application of computer algorithms. The
values of each column in a data table generally conform to a
certain feature or distribution, which results in a portion of the
data values being duplicated, and the higher the percentage

A B C D E
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Table 1: Example 1

A B C D E
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

Table 2: Example 2

of duplicated data, the more effective this pruning will be,
because this pruning is equivalent to reducing the size of the
data from the data unit level.

The example of pruning is shown in Table 1, there are 5
attributes, 5 rows of table, all data values are [1,5], each data is
"inverted", and there are 25 inverted index items in each data,
while in attribute column A, there are 5 data in (1, A), and
the same is true for other attribute columns, so after pruning
the duplicate values, the data volume of 5*5=25 becomes
an inverted index item with only 5 entries, and the current
efficiency of data value deduplication is (25− 5)/25 = 80%,
and only 20% of the data volume needs to be statistically
verified.

The above example can fully illustrate the superiority of
pruning for duplicate values, the following additional example
shown in Table 2, the same size of the table, but each attribute
contains 1 to 5, that is to say, in the current five attributes, the
distribution of its data is the same, the duplicate value pruning
can only be merged, to obtain five inverted index entries
shaped like (1, {A,B,C,D,E}), and in subsequent mining
algorithms, for the "1, 2, 3, 4, 5" are no difference, its same
distribution is redundant information, that is, duplicate value
pruning can not recognize the duplicate data distribution. And
intuitive observation obviously leads to the conclusion that
all five attributes are identical and there is interdependence,
and this quick response also originates from the observation
of attribute data distribution. Therefore, this paper considers
the addition of pruning for repetitive data distributions.

2) Distribution Repeatability Optimization
Repeated-value pruning in the data structure optimizes the
overall data structure repetition, but when the data structure
repetition rate in the table is not very high, and a large number
of different data appear in the same column family, the effect
of this pruning is not obvious, especially in the repetition rate
is not very high, but in line with the containment dependency
of the table, a lot of repetitive inverted index entries many
times to carry out statistical validation of a large amount of
wasted time and space.

While the distribution of repetitive pruning can be opti-
mized for the distribution of the data structure, the more

9

Li et al.: Computer Algorithm Design and Linearity Analysis of Its Data Structures

similar or even the same distribution of the data structure,
then the distribution of repetitive pruning effect is better.
Intuitively, different data appearing in the same column family
are only calculated once.

In Table 1 of the previous section, there is only one data
distribution in the 5*5 table, each attribute value field is [1,
5], so the distribution of all the values of its inverted index
table is {A,B,C,D,E}, while there are 5 different data
values (1 to 5). In fact, after constructing the inverted index
table, enumerating the inverted index table no longer requires
data values, so the 5 different data values result in redundant
distribution values. Pruning the distribution values just solves
this problem. Based on the repetitive pruning of the data
structure, (5 − 1)/5 = 80% more data are de-emphasized,
and only the remaining 20% of the proportion of different
distribution values need to be verified. Therefore, after the
combined data duplicity and distribution duplicity pruning of
the inverted index table, the data value and distribution value
of the inverted index table are unique, that is, constituting
a "bijection", the overall de-emphasis efficiency in Table 2
reaches (25− 1)/25 = 96%, which greatly improves the lin-
earity of the data structure, and enhances the efficiency of the
computer algorithms.

Unlike repetitive pruning of data structures, repetitive prun-
ing of distributions introduces the additional cost of de-
weighting the combinatorial cases of all column families,
thus gaining the benefit of not having to deal with repetitive
combinatorial cases of column families. However, in extreme
cases, such as large tables (the number of rows and columns
are relatively large) in which almost no data appear in the same
column family, the number of combination cases of all column
families is 2|U | − 1, where |U | is the number of attribute
columns, the time and space cost of de-duplication of such
a large number of combination cases is exponential.

III. Parallel Algorithms Based on Optimization of the
Linearity of Data Structures
In this paper, before designing the implementation of GaBP
parallel algorithm for the optimization of the linearity of the
data structure, it is assumed that the corresponding left end
matrix of the linear equations is of order n, and the half
bandwidth is d. The bandwidth is 2d+1 (the reason for this is
that the banded matrices are symmetric). Setting the left end
matrix A of the system of linear equations in a sparse matrix
storage method in a column-first manner with a diagonal
structure, i.e., Aij is denoted by A[k][j], and with A[k][j],
where k = 1, · · · , (2d+ 1), j = 1, · · · , n, there is:

i = j − d− 1 + k. (8)

In addition, then set up the buffer area between the head and
the tail:

j = 1, · · · , d
and j = (d+ n+ 1), · · · , (2d+ n), k = 1, · · · , (2d+ 1).

(9)

Then the total data storage area has:

j = 1, · · · , (d+ n+ d), k = 1, · · · , (2d+ 1). (10)

Therefore, the data storage structure is defined separately for
A, b, x, x0, p, u, sp, su as follows:

A[2d+ 1][m], P [2d+ 1][m], U [2d+ 1][m], (11)

m = 2d+ n. Then:

b[m], x[m], x0[m], sp[m], su[m]. (12)

The same m = 2d+ n. Then:

Aij , Pij , Uij ,j = 1, · · · , (2d+ n),

k = 1, · · · , (2d+ 1),

i = j − d− 1 + k. (13)

Thus given a P [k][j] of k, j corresponding to a Pij , there
is:

i = j−d−1+k, k = 1, · · · , (2d+1), j = (d+1), · · · , (d+n).
(14)

Then the Pji corresponding to Pij is denoted:

P [2d+ 2− k][j − d− 1 + k]. (15)

That is, if there is Pij denoted as P [k][j], then the corre-
sponding Pji is denoted as:

P [2d+ 2− k][j − d− 1 + k]. (16)

With the above representation, the formulas for data structure
propagation and updating in the algorithm can be written as
the following formulas respectively:

P [k] [j] =−A [k] [j] ∗A [k] [j] /(sp[j − d− 1 + k]

− P [2d+ 2− k][j − d− 1 + k]). (17)

U [k][j] =−A[k][j] ∗ (su[j − d− 1 + k]− U [2d+ 2− k]

[j − d− 1 + k])(sp[j − d− 1 + k]− P [2d+ 2

− k][j − d− 1 + k]). (18)

The steps of GaBP parallel concise algorithm based on data
structure linearity optimization include initialization, start of
iteration, message accumulation, message updating, solution
vector, convergence determination, convergence jump out of
iteration, output result and message exchange between nodes.
Special treatment is also required for the first computational
data node (q = 0) and the last node (q = p − 1). The first
node does not exchange data for its preceding node, and the
last node does not exchange data for its following node.

Also for further computer parallel algorithm optimization,
the following optimization strategies are used in this paper.

(1) Synchronous GaBP algorithm is used between nodes,
while asynchronous GaBP algorithm is used within
nodes, so that adding the message accumulation calcu-
lation in asynchronous way can accelerate the iteration
convergence speed.

10

Li et al.: Computer Algorithm Design and Linearity Analysis of Its Data Structures

(2) For iterative convergence judgment, the judgment can
be changed from each iterative step to a strategy of
judging after several iterative steps, which reduces the
computation required for convergence judgment.

Through the implementation of the above optimization strat-
egy, it can save the data structure exchange space in the
operation of computer algorithms, and make the data structure
exchange more intuitive and simple, and improve the linearity
of the data structure and the algorithmic performance.

IV. Application Analysis of Algorithms Based on
Linearity Analysis
A. Linearity Analysis of Algorithmic Data Structures

In this paper, in order to explore the change of the linearity
of the data structure in the computer algorithm after the
improvement using the linearity optimization strategy, the
parallel algorithm without improving the linearity of the data
structure and the parallel algorithm designed in this paper are
compared and analyzed, and the data structure in the operation
of the parallel algorithm extracted by mining is taken as an
object of analysis, and the linearity of the data structure is
analyzed. The results of the analysis of the linearity of the
data structure in the computer algorithm are shown in Figure
2, in the parallel algorithm running without optimizing the
linearity of the data structure, the computer algorithm running
time is less than 45s, and the linearity of the data structure
is better, but the slope is too small, and the ability of fast
response is insufficient. The running time to 50-70s, the local
linearity is better, but the slope is too small, the data structure
inflection point occurs, and the response is insufficient in load
regulation. 80-100s, the linearity of the data structure is better,
but the slope is too large, and the fast response capability is
too large. In contrast, in the running time of the algorithm
of this study, the linearity of the data structure is better and
the slope is reasonable, and there is no data structure change
inflection point. This shows that this paper can support the
stable operation of the computer algorithm and improve its
computational performance by improving the linearity of the
data structure.

B. Performance Analysis of Large-Scale Numerical
Computation

In this section, seven space truss systems of different scales
are used as computational models to verify the correctness,
effectiveness and computational scale of the parallel algorithm
designed in this paper.Some operations of RDD can be spec-
ified by the parameter numTasks to specify the number of
tasks for the parallel operation, which are set to the number
of RDD’s Partitions as suggested by Spark’s help document,
i.e., each Partition is executed by One task for each partition.

For the same computational model, the number of RDD
Partitions affects the computational efficiency, in order to
maximize the memory computation, Model 4 (DOFs of
2999999) is used as the object to test the computation time un-
der different numbers of Partitions. The Spark platform in this

Figure 2: Algorithm data structure linear analysis

paper has 5 workers, assuming that their performance is the
same, and the number of partitions is a multiple of 5 to save the
most time, the test results of the parallel algorithm designed in
this paper are shown in Table 3 for the computation time under
different models and different numbers of partitions.When the
number of partitions is less than 30, the memory is overflowed,
and the computation is not possible.When the number of
parts is greater than 30, the computation time varies with
the number of parts. Greater than 30, the computation time
increases with the increase of Partition number. Therefore, for
the Spark platform in this paper, when calculating Model 4,
the best calculation performance can be obtained when the
number of Partitions is 30, which can maximize the use of
data structure memory calculation. The later calculations are
based on this, and the Partition number is adjusted according
to the size of the model. As the model size increases, the
computation time of the algorithm continues to increase, and
the growth rate is getting bigger and bigger, when the model
size is larger than 5,000,000 degrees of freedom, the growth
of the computation time is more obvious, and the computation
efficiency is obviously reduced, and the computation time in
15,000,000 degrees of freedom has reached 22.57h, this is
due to the number of computational tasks at this time, the
Spark platform is in an oversaturated state, the computational
resources competition is large, and the additional computa-
tion of the data structure memory can be maximized. The
competition for computational resources is large, and the
extra overhead of computation is large. Comprehensively, the
algorithm in this paper reduces the complexity in large-scale
data computation due to the optimization of the linearity of the
data structure.

C. Linearity Analysis in SAT Problem Solving
In this paper, the Minisat algorithm is selected as the bench-
mark algorithm for the comparison of experimental results,
and its solution speed is far ahead of some other efficient
SAT solvers, and it is considered to be the most concise and

11

Li et al.: Computer Algorithm Design and Linearity Analysis of Its Data Structures

Calculation time of each model
Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
DOFs 144559 485263 2100006 2999999 7999995 12000154 15000000

Times (s) 28.4 159.6 2156.3 3567.4 26514.3 51178.3 81263.5
Calculation time of different partition Numbers (Model 4)

Partition 10 20 25 30 35 40 45
Times (s) Out Of Memory Error 3756.9 4058.5 4256.3 4357.4

Table 3: The algorithm is analyzed in different partitions and models

efficient DPLL algorithm so far. The improved algorithm in
this paper solves some difficult stochastic SAT problems by
optimizing the linearity of the data structure, and the solving
effect is remarkable. After testing the test cases, the algorithm
solving results of this paper will be compared with the running
results of the Minisat algorithm, which has the best perfor-
mance so far, for linearity analysis. The hardware environment
is a PC with Intel Core2 Dual Core CPU 2.0GHz and 1G
RAM. The operating system used is Microsoft Windows XP.
The algorithm running platform is Microsoft Visual C++ 6.0.

The test cases in this paper are all harder instances of
stochastic 3-SAT problems, which are benchmark problems in
SATLIB, and these problems are difficult to solve with general
algorithms, so these instances are selected for testing in this
paper to show the performance advantages of the parallel
algorithms designed in this paper. Some of these instances
are satisfiable and some are not, with the number of variables
ranging from 100 to 300 and the number of clauses ranging
from 500 to 1100. In this paper, 34 sets of hard randomized 3-
SAT instances are selected from them. The randomized 3-SAT
problem is a very difficult class of SAT problems, which is a
big challenge both for the completion algorithms and for the
local search algorithms, so it is significant to be able to solve
algorithms for instances in this region.

1) Sat Examples Can Be Satisfied to Solve the Linearity
Analysis
Set the Minisat algorithm’s timeout to 1000s, beyond which
the solution will not continue. The running time here refers
to the CPU time, and the time unit is second. In this paper,
the number of iterations of the parallel algorithm is 100, the
number of flips is 10000, the noise parameter is set to 5/10,
and the timeout time is 1000s.

In order to better measure the average performance and
stability of the algorithm, each group of instances are run
20 times and the average value is taken as the final result.
The running results for the satisfiable instances are shown in
Table 4. For the satisfiable SAT instances, the solution speed
of this paper’s parallel algorithm is improved for almost all
instances (except instance uf150-01.cnf). Especially for in-
stances uf175-01.cnf (0.063s), uf225-013.cnf (0.065s), uf225-
022.cnf (0.092s), uf250-087.cnf (0.099s), and uf250-089.cnf
(0.065s), the speed of the solving is significantly improved.
And Minisat’s solution speed even reaches 33.540s when
solving the uf225-022.cnf instance, and because this paper
optimizes the linearity of the data structure of the parallel
algorithm, so that the approximate solution provided by the

data structure accelerates the searching process of this paper’s
algorithm, and this paper’s parallel algorithm will prefer-
entially search for the subspace in which the approximate
solution is located, which ensures that the vast majority of
the search process clauses are satisfiable during the search
process, thus accelerating the search speed. Therefore, the
parallel algorithm designed in this paper is suitable for solving
this kind of problems.

2) Unsatisfiable Example Solving Linearity Analysis
The running results of unsatisfiable instances are shown in
Table 5. For the unsatisfiable SAT instances, the solution
speed of this paper’s parallel algorithm is slower than that
of Minisat’s algorithm, and the average solution time of this
paper’s parallel algorithm is 16.677 s, while the average
solution time of Minisat’s algorithm is only 11.941 s. When
a given formula is unsatisfiable, within the given number of
iterations and flip-flops, this paper’s parallel algorithm can
not obtain the solution of the original problem. This will
inevitably consume part of the solution time. However, the
solution speed of this paper’s parallel algorithm is improved
by 117.17% compared with Minisat’s algorithm in solving the
unsatisfiable SAT instance of uuf250-092.cnf.

Comprehensive analysis of the results shows that the paral-
lel algorithm for optimizing the linearity of the data structure
in this paper is not suitable for solving unsatisfiable stochastic
3-SAT problems, but it is more efficient for solving satisfiable
stochastic 3-SAT problems. It is suitable for solving satisfiable
stochastic 3-SAT problems.

V. Conclusion
This paper uses multi-threading technology and data pruning
method to optimize the linearity of the data structure and
design computer parallel algorithm. The linear degree of the
optimized data structure and the application effect of the
designed parallel algorithm are analyzed, and it is found that:

(1) In the operation of the algorithm without optimized
processing of the linearity of the data structure, when
the algorithm running time reaches 50-70s, the linearity
of the data structure appears to have too small a slope,
and at the same time, there is an inflection point of the
data structure, which indicates that the algorithm does
not have a sufficient response when the load is regulated.
And the linearity optimization strategy proposed in this
paper has obvious improvement on the linearity of the
data structure, the overall linearity is smooth and the
slope is reasonable, and the linearity is better.

12

Li et al.: Computer Algorithm Design and Linearity Analysis of Its Data Structures

Test case Variable number Clause number The mission at (s) This algorithm runs time (s) Whether it can be met
uf125-01.cnf 125 638 0.152 0.079 SAT
uf150-01.cnf 150 745 0.023 0.076 SAT
uf175-01.cnf 175 853 6.598 0.063 SAT
uf200-01.cnf 200 875 0.133 0.072 SAT
uf200-021.cnf 200 875 0.061 0.090 SAT
uf225-01.cnf 225 985 0.059 0.076 SAT
uf225-013.cnf 225 985 8.567 0.065 SAT
uf250-01.cnf 250 1087 0.038 0.068 SAT
uf250-096.cnf 250 1087 0.065 0.043 SAT
uf225-022.cnf 225 985 33.540 0.092 SAT
uf225-023.cnf 225 985 0.148 0.070 SAT
uf225-024.cnf 225 985 0.059 0.067 SAT
uf225-025.cnf 225 985 0.116 0.017 SAT
uf250-087.cnf 250 1087 11.564 0.099 SAT
uf250-088.cnf 250 1087 0.144 0.016 SAT
uf250-089.cnf 250 1087 18.471 0.065 SAT
uf250-094.cnf 250 1087 0.056 0.014 SAT

Table 4: The algorithm and the algorithm run time comparison

Test case Variable number Clause number The mission at (s) This algorithm runs time (s) Whether it can be met
uuf225-022.cnf 225 985 2.562 13.365 UNSAT
uuf225-023.cnf 225 985 8.794 17.222 UNSAT
uuf225-024.cnf 225 985 16.552 19.248 UNSAT
uuf225-025.cnf 225 985 3.265 14.783 UNSAT
uuf250-092.cnf 250 1087 27.181 12.516 UNSAT
uuf250-093.cnf 250 1087 11.477 14.842 UNSAT
uuf250-094.cnf 250 1087 18.417 18.483 UNSAT
uuf250-095.cnf 250 1087 8.974 9.344 UNSAT
uuf250-096.cnf 250 1087 19.51 26.034 UNSAT
uuf175-01.cnf 175 853 25.003 29.55 UNSAT
uuf200-01.cnf 200 875 5.849 11.35 UNSAT
uuf200-09.cnf 200 875 13.233 16.059 UNSAT
uuf225-01.cnf 225 985 10.603 16.927 UNSAT
uuf225-06.cnf 225 985 5.781 18.105 UNSAT
uuf250-01.cnf 250 1087 10.175 16.498 UNSAT

uuf250-010.cnf 250 1087 3.366 11.426 UNSAT
uuf250-023.cnf 250 1087 12.252 17.757 UNSAT

Table 5: The example is not satisfied with the analysis of velocity analysis

(2) The parallel algorithm in this paper shows high compu-
tational efficiency in dealing with large-scale numerical
values, when calculating Model 4, the best computa-
tional performance can be obtained when the number
of Partition is 30, and the running time is only 3756.9 s.
When the model size is 15000000 degrees of freedom,
the computational time reaches 81,263.5 s, which is a
more obvious growth, but still maintains a high perfor-
mance.

(3) This paper’s algorithm in the SAT problem solving em-
pirical analysis compared with the most concise and ef-
ficient Minisat algorithm, this paper’s parallel algorithm
in the solving of satisfiable linear SAT instances solving
speed is much higher than the Minisat algorithm. When
solving uf225-022.cnf instance, the solution time of this
paper’s algorithm and Minisat algorithm is 0.092s and
33.540s respectively, while the solution speed is poorer
in solving nonlinear unsatisfiable instances.

Comprehensively, the data structure linearity optimization
strategy proposed in this paper can effectively improve the
linearity of the data structure in the operation of the algorithm,
reduce the time complexity and space complexity of the data

structure, so as to enhance the computational efficiency of the
algorithm and save the overhead of the computer operation.

References
[1] Pirzada, S. J. H., Murtaza, A., Xu, T., & Jianwei, L. (2019). The compat-

ibility analysis of AES algorithm for design portability on FPGA. Int. J.
Comput. Theory Eng., 11(6), 112-115.

[2] Danilov, A. A., Aubakirov, R. R., Mindubaev, E. A., Gurov, K. O., Telyshev,
D. V., & Selishchev, S. V. (2019). An algorithm for the computer aided
design of coil couple for a misalignment tolerant biomedical inductive
powering unit. IEEE Access, 7, 70755-70769.

[3] Chekin, M., Hosseinzadeh, M., & Khademzadeh, A. (2019). An anti-
collision algorithm based on balanced incomplete block design in RFID
systems. International Journal of RF and Microwave Computer-Aided
Engineering, 29(11), e21882.

[4] Shirokanev, A. S., Kirsh, D. V., & Kupriyanov, A. V. (2017). Research of an
algorithm for crystal lattice parameter identification based on the gradient
steepest descent method. Computer Optics, 41(3), 453-460.

[5] Mao, W. (2018). An improved computer forensics algorithm based on
pattern recognition and data mining. International Journal for Engineering
Modelling, 31(1), 244-251.

[6] Minetto, R., Volpato, N., Stolfi, J., Gregori, R. M., & Da Silva, M. V.
(2017). An optimal algorithm for 3D triangle mesh slicing. Computer-Aided
Design, 92, 1-10.

[7] Omar, Y. M., Osama, H., & Badr, A. (2017). Double hashing sort algorithm.
Computing in Science & Engineering, 19(2), 63-69.

[8] Jin, L., He, Y., Zhang, C. K., Jiang, L., Yao, W., & Wu, M. (2023). Delay-

13

Li et al.: Computer Algorithm Design and Linearity Analysis of Its Data Structures

dependent stability of load frequency control with adjustable computation
accuracy and complexity. Control Engineering Practice, 135, 105518.

[9] Bo, Z., Lu, L., Sharf, A., Xia, Y., Deussen, O., & Chen, B. (2017, October).
Printable 3D trees. In Computer Graphics Forum (Vol. 36, No. 7, pp. 29-40).

[10] Zayer, R., Steinberger, M., & Seidel, H. P. (2017, May). A gpu-adapted
structure for unstructured grids. In Computer Graphics Forum (Vol. 36, No.
2, pp. 495-507).

[11] Wang, F. (2017). 26. Application and Simulation Research of Computer Par-
allel Algorithm based on Cloud Computing Environment. Boletín Técnico,
ISSN: 0376-723X, 55(18), 177-185.

[12] Lu, C. (2017). Research on optimization of computer network quality
of service based on improved red algorithm. Revista de la Facultad de
Ingenieria, 32(4), 321-328.

[13] Taubenfeld, G. (2009). Contention-sensitive data structures and algorithms.
In Distributed Computing: 23rd International Symposium, DISC 2009,
Elche, Spain, September 23-25, 2009. Proceedings 23 (pp. 157-171).
Springer Berlin Heidelberg.

[14] Lao, B., Nong, G., Chan, W. H., & Xie, J. Y. (2018). Fast in-place suffix
sorting on a multicore computer. IEEE Transactions on Computers, 67(12),
1737-1749.

[15] Feng, D., Chernikov, A. N., & Chrisochoides, N. P. (2018). A hybrid parallel
Delaunay image-to-mesh conversion algorithm scalable on distributed-
memory clusters. Computer-Aided Design, 103, 34-46.

[16] Xu, L. J., Wei, S. Y., Lu, X. Q., He, Z. H., & Zhu, J. M. (2022). Algorithm
Design for Asset Trading Under Multiple Factors. International Journal of
Foundations of Computer Science, 33(06n07), 867-886.

[17] Netto, R., Fabre, S., Fontana, T. A., Livramento, V., Pilla, L. L., Behjat,
L., & Güntzel, J. L. (2021). Algorithm selection framework for legal-
ization using deep convolutional neural networks and transfer learning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 41(5), 1481-1494.

14

