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Abstract The objective of this study is to optimize the personalized mass customization building portfolio by using BIM and
NSGA algorithms to achieve the desired balance between cost and efficiency. The study uses BIM software for cost simulation,
and NSGA-II algorithm for multi-objective optimization. The mathematical model of building cost and duration is constructed
and the multi-objective optimization algorithm is applied to achieve optimization under multiple objectives. The results of
the study show that after 20,000 generations of iterations, 191 Pareto solutions are determined to be valid, and the stability
and uniform distribution of the optimization objectives are verified, with the percentage of valid solutions reaching 92%. In
the conducted VIKOR scenario analysis, three different cost-effective optimization schemes are proposed depending on user
preferences. The method of integrating BIM and NSGA algorithm can effectively improve the cost-effectiveness of building
design, and provides a feasible and efficient optimization path for personalized mass-customized buildings.

Index Terms NSGA algorithm, building portfolio, multi-objective optimization, cost-
effectiveness

I. Introduction

T s a pillar industry of China’s social and economic devel-
opment, the construction industry has caused unavoid-

able problems such as excessive consumption of resources and
environmental pollution while developing at a high speed [1],
[2]. In addition, the homogenization of China’s architectural
residential design has become more and more serious over
the years [3]. Currently, China’s construction industry is in
a critical stage of transformation and upgrading, and the
assembly building with the core of green development concept
and the BIM technology and NSGA algorithms with the
goal of information management are the two most important
tasks [4], [5]. However, assembled buildings bring an increase
in cost while improving environmental benefits, because the
industry’s current understanding of assembled buildings is
not thorough enough, making the development of China’s
building industrialization often limited to assembled concrete
structures [6], [7]. but we also need to study and promote
the industrialization of cast-in-place systems, and increase the
promotion of steel structures [8], [9]. The main problems in
the promotion of building informatization in China are data
non-interoperability, data silos, and difficulty in data exchange
[10], [11]. Each participant in the project has repeated data
entry in different applications and platforms, which leads to a
huge waste of resources [12], [13]. The platform is not perfect
and lacks incentives for the underlying applications [14].

The service of "personalized customization" appears in

many modern high-end brands, mainly serving the aristocrats
or celebrities, but its nature is not unfamiliar, it is in the era of
non-mechanized mass production is only a kind of manufac-
turing and processing [15]. personalized mass customization
as a new type of production method, it is for the end-users
to customize the products of a method, not only can provide
diversified, economical products for the user, but also can
effectively avoid the type of many types of inefficiency of
production production methods [16], [17].

The above research area of BIM in mass personalized
and customized buildings has achieved the construction of
BIM component libraries, residential customized design ap-
plications such as Wiki House, and the personalized needs
and interactive design of users, although it has achieved the
construction of BIM component libraries, Wiki House, and
other residential customized design applications. However,
purely customized components cannot achieve productivity
improvement, and there is no construction of component-
based combination optimization to control cost, energy con-
sumption, and user preference from the perspective of compo-
nents. Therefore, this study needs to construct the relationship
between components, user preference, and energy consump-
tion, so as to realize the fine management of components and
provide a research basis for constructing a mass customization
component combination optimization system.

At the beginning of the thesis, BIM software is utilized for
cost simulation to establish a building cost and duration model
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based on direct cost, indirect cost and commissioning benefit.
Apply NSGA-II algorithm for multi-objective optimization to
deal with multiple conflicting objective functions in order to
find the optimal combination of cost and efficiency. Contex-
tual analysis is done using the VIKOR method to demonstrate
three optimization scenarios to accommodate different user
preferences. The effectiveness and stability of the method
is verified by comparing the duration and cost optimization
results of the algorithm iterations.

II. Methodology
A. BIM-based Construction Cost Simulation

The diversity of the underlying theories and the independence
of the disciplines make the building analysis tools specialized,
and problems such as fragmentation of the tools, model recon-
struction and protection of property rights arise. Revit used
in this study belongs to the BIM software, while the models
created by SketchUp and Rhino in the form of points, lines,
and surfaces are currently not available to the construction
industry standards for delivery, and its lack of support for IFC
format export does not fully comply with the characteristics of
BIM software. And building simulation software OpenStudio
is SketchUp as a platform, integrated building performance
analysis engine LadybugTools and integrated multi-objective
algorithms Wallacei to Rhino and Grasshopper as a platform.
The advantages of each platform need to be utilized to as-
sist in building design. In the face of multi-platform, multi-
disciplinary joint analysis, the basic problem is the circulation
and sharing of data, the need to establish common data stan-
dards, make full use of the BIM model, in support of building
design, construction and other phases at the same time, to meet
the requirements of the building performance simulation, to
avoid duplication of the modeling, breaking the "information
silo", to realize the "one model, many calculations". "One
model, many calculations".

1) Mathematical Model of Construction Cost Optimization

There exists a certain constraint relationship between schedule
and cost, i.e., shortening the schedule will cause the cost to
increase, and cost reduction will cause the schedule to be
extended. This kind of problem in which the objective value
of one function is reduced to increase the objective value
of another function is called a multi-objective optimization
problem, which can also be expressed as the minimum point
cost shortest path problem (MCSP) in graph theory, whose
directed graph is shown in Figure 1. By determining the
duration for each process and preparing a construction plan,
an equilibrium state is sought between the contingency state
and the normal state to achieve the integrated optimization of
schedule-cost. Where each process is represented by a node,
where the English letter inside the node indicates the number
of the process. The purpose of the duration-cost optimization
problem studied in this paper is to find a shortest path from
node A to node F that minimizes the cost of all nodes.

Figure 1: Duration-cost optimization digraph

2) Data Modeling
In order to reduce the number of iterations of the algorithm,
the optimal solution obtained is more accurate and objective,
it is necessary to make the corresponding assumptions in the
establishment of the duration-cost optimization model;
Assumption 1: There are no other resource constraints and no
rework problems in each process.
Assumption 2: The construction organization design of the
project has been determined, involving the planned duration
and cost targets to determine, before the completion of all
processes, the program will not make significant adjustments.
Assumption 3: Process duration and cost have a certain
functional relationship. Table 1 is a note on the notation used
in this paper.

The project cost is mainly composed of direct and indirect
costs, but the benefits of commissioning the project after
completion are added to take into account the effect of the
duration of the commissioning phase on the cost. A nonlinear
function is used to describe the relationship between each cost
element and process duration.
1) Direct cost

Once the duration is adjusted in the project, the cost will
change accordingly. Accelerate the construction schedule at
the same time, need to invest more labor and mechanical
equipment. Labor and machinery and equipment costs are
an important part of the direct costs of the project, i.e., the
increase in the duration of the process leads to an increase
in direct costs. However, considering that the total amount of
manpower and machinery to be invested in a certain process
is certain, the cost of catching up will not always decrease
with the increase in the duration of the work, and therefore the
decrease in direct costs will slow down, i.e.,

C1i = C1imin + k1 (Dil −Di)
2
. (1)

k1 =
Clim ax − Clim in

(Dil −Die)
2 . (2)

2) Indirect Costs
Project indirect costs are mainly composed of taxes, man-

agement fees, office expenses and other fixed costs, and the
duration of a process does not have a clear correlation, can be
approximated as a single working day of indirect costs as a
fixed value. That is,

C2i = M ∗Di. (3)
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Symbol Implication Symbol Implication
C1 Direct cost Tmax Contract period
C2 Indirect cost T Construction period
P Put into operation benefit n Number of processes
Dil Normal schedule of the i process C1i Direct costs of work i
Die Emergency duration of operation i C2i Indirect costs of work i
Di Duration of item i work C1imin Direct contingency costs for item i work
K1 Marginal cost coefficient C1imax Normal direct costs of work in Item i
M Daily overhead α Reward and punishment factor

Table 1: Symbol explanation

M =
C2

T
. (4)

3) Commissioning Benefits The shorter the duration of indi-
vidual activity processes, the faster the duration is accordingly,
and the sooner the project is commissioned and running, the
greater the time value of money generated, i.e.,

P = α (T − Tmax) , (5)

where α =

{
α1T − Tmax ≥ 0
α2T − Tmax ≤ 0

, T =
∑

Di.

In summary, the relationship between cost and process
duration can be expressed as:

Ci = C1i + C2i + P. (6)

Establish the mathematical modeling equation. The objec-
tive function (1) is,

MinC =
∑

Ci. (7)

The objective function (2) is,

MinT =
∑

Di (8)

.
The constraints are,{

Die ≤ Di ≤ Dil

T ≤ Tmax
. (9)

B. Multi-objective Optimization Algorithm
Personalized mass customization of building construction site
temporary facilities combination optimization problem usu-
ally involves multiple objective functions, and the indicators
of each objective function often conflict with each other and
are difficult to coordinate. In order to solve the above multi-
objective optimization problem, a multi-objective evolution-
ary algorithm (MOEA) based on dominance relationship is
proposed.

Multi-objective optimization problem (MOP), which con-
sists of objective functions and related constraints, is given
below as a general description about MOP.

For a given decision variable X = (x1, x2, ..., xn), the
following constraints need to be satisfied,{

gi(X) ≥ 0, i = 1, 2, · · · k
hi(X) = 0, i = 1, 2, · · · , w . (10)

In an optimization problem, assume that there is r optimiza-
tion objective, and the optimization objective is denoted as,

f(X) = (f1(X), f2(X), · · · , fn(X)) . (11)

In a multi-objective optimization problem, the aim is to
find X∗ = (x∗

1, x
∗
2, · · · , x∗

n) that satisfies the aforementioned
constraints such that f(X) satisfies Eq. (11) while reaching
optimality.

Unlike single-objective optimization problems, multi-
objective optimization problems cannot take into account
all objectives. Given a multi-objective optimization problem
min f (X), X∗ ∈ Ω is optimal if ∀X ∈ Ω, satisfies one of the
following two conditions, ∧

i∈I
(fi(X) = fi (X

∗))

∧
j∈I

(fj(X) > fi (X
∗))

(12)

where I = {1, 2, · · · , r}, then Ω is said to be a feasible
solution set satisfying Eq. (12), i.e.,

Ω = {X ∈ Rn |gi (X) ≥ 0, hj (X) = 0 , (i = 1, 2, · · · , k; j = 1, 2, · · · , w)} .
(13)

The set of Pareto optimal solutions to a multi-objective
optimization problem, expressed in the space of objective
functions, is known as the Pareto optimality bound (PF ∗). It
is defined as follows,

PF ∗ = {f(X) = f1(X), f2(X), . . . , fr(X) |X ∈ X∗ } .
(14)

Taking the two-dimensional target space as an example, the
Pareto optimal boundary is shown in Figure 2, and the Pareto
optimal boundary is the curve ABCDEF.

C. NSGA-II Algorithm
The Non-dominated Sorting Genetic with Elite Strategies
(NSGA-II) algorithm is an improvement on the NSGA al-
gorithm, compared to the NSGA algorithm, the NSGA-II
algorithm is improved in the following three ways,
a. proposing a fast non-dominated sorting method

The fast non-dominated sorting makes the complexity of the
optimization algorithm decrease from the original O(rN3) to
O(rN2), where r is the number of objective functions and
N is the population size, which improves the computational
efficiency.
b. Introduction of crowding comparison operator

The crowding comparison operator eliminates the influence
of artificially specified sharing parameters. And it makes the
individuals in the population can be uniformly expanded to
the whole Pareto space, so as to ensure the diversity of the
population.
c. Introduction of elite strategy
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Figure 2: Pareto optimal boundary

The elite strategy expands the sampling space and retains
the optimal individuals.

1) Fast Undominated Sorting
In NSGA-II algorithm, the dominance relationship reflects the
relative merits of individuals. Assume that the size of the pop-
ulation Pop is N , the population is sorted by non-inferiority
hierarchy to obtain k non-inferior frontiers P1, P2, · · · , Pk,
and each non-inferior frontier satisfies the following condi-
tions,

1)
⋃

p∈{P1,P2,··· ,Pk} P = Pop.
2) For ∀i, j ∈ {1, 2, · · · , k}, i ̸= j, Pi ∩ Pj = ∅.
3) P1 ≻ P2 ≻ · · · ≻ Pk, i.e., the individual in Pl+1

is directly governed by the individual in Pl, (k =
1, · · · , l − 1).

Let two vectors {np} and {sp}, where p ∈ Pop, np are the
number of individuals dominating individual p and sp is the
set of individuals dominated by individual p, viz

np = |{q |q ≻ pp, q ∈ Pop}| , (15)

sp = |{q |p ≻ qp, q ∈ Pop}| . (16)

The np and sp for each individual are calculated by binary
loops, then P1 = {q|nq = 0, q ∈ Pop}, and then Pk =
{q|nq − k + 1 = 0} is calculated sequentially in the same
way, and the resulting Pareto rank stratification is calculated
as shown in Figure 3 until all individuals have been assigned
to the appropriate stratum.

2) Crowding Distance
To maintain population diversity, Deb introduced the concept
of crowding. The crowding distance of individual i is shown
in Figure 4, and the aggregation distance of individual i is

Figure 3: Pareto hierarchy diagram

Figure 4: Individual i congestion distance

P [i]distance assumed to be the value of P [i].t as a function of
individual i on the objective function t in a two-dimensional
space:

P [i]dis tan ce = (P [i+ 1] · f1 − P [i− 1] · f1) + (P [i+ 1] · f2 − P [i− 1] · f2) .
(17)

Extending to the general case, when there is r subgoal, the
aggregation distance of individual i is:

P [i]dis tan ce =

r∑
j=1

(P [i+ 1].fj − P [i− 1].fj) . (18)

76



Zhang and Ping: Optimization of Personalized Mass Customization Building Portfolio by Integrating BIM and NSGA Algorithms

Figure 5: Composition process of NSGA-II new species

3) Elite Strategy
In NSGA-II optimization algorithm, the parent population and
the offspring population will be combined together to form
a mating pool. Individuals in the mating pool generate the
next generation population by competing with each other.
This is conducive to the transfer of excellent genes from
good individuals to the next generation, thus improving the
accuracy of the optimization results. The specific process is
shown in Figure 5,

1) Merge parent population Pt as well as child population
Qt to form a new population Rt.

2) Generate a number of Pareto rank subsets Z =
(Z1, Z2, · · · , Zk) based on a fast non-dominated sorting
rule.

3) Select the first N individuals in Rt to form the next-
generation parent population Pt+l, and the remaining
individuals are eliminated.

III. Results and Discussion
A. Case Study of Personalized Mass Customized
Building

In this case, we take the house type E of the H1 building of the
L project in G city as the object of study, and set the quantity
constraints of the required prefabricated components accord-
ing to the original residential design based on the component
information in the database of mass customized components.
The length and projected area constraints of the components
are set, a multi-objective optimization model is established
using the NSGA-II algorithm, and the Pareto solution set is
selected after iterative evolution, and the contextual analysis
of the three component selection scenarios is carried out based
on the user’s weight settings for cost, energy consumption, and
preference.

From the point of view of industrial construction, a single-
story residential house type contains a variety of compo-
nents such as prefabricated slab B, prefabricated balcony Y,
prefabricated interior wall N, prefabricated exterior wall W,
prefabricated air-conditioning panel K, prefabricated beam L,
prefabricated window P, etc. These components are classified
into types according to their materials, uses, and construction
characteristics. And these components are divided into differ-

ent types according to different materials, uses, construction
characteristics and so on. For example, prefabricated panels
are divided into prefabricated PK panels, prefabricated lami-
nated panels, prefabricated hollow core panels, prefabricated
waffle panels and so on.

The study sample house type requires a variety of building
blocks (=7, containing B, Y, N, W, K, L, P, where 1 stands for
building block B, 2 stands for building block Y, and so on)
to form a mass-customized house, each type of component
requires j(j = 1, 2, ..., n) respectively, the amount of work
for each component is Qij , the cost of production is Cij ,
and the energy consumption of the building is Bij , The user
preference is Pij with a projection area of Aij . Q, I, C, B,
P, A, L, M, etc. are selected as the main parameters of the
building blocks. The combination chosen for each building
block isB = {B1, B2, ..., Bj} and the final combination
scheme is {B, Y, N, W, K, L, P}.

1) Iterative Analysis of Optimization Objectives
Taking the components in the database as the selection range
of the customized building combination scheme, the minimum
value of the cost and energy consumption of the large-scale
customized building, and the maximum value of the user’s
preference as the optimization objectives, the initialized pop-
ulation size is set to be 500, and the number of iterations is
20,000 generations, and the number of {B, Y, N, W, K, L, and
P} is {10, 3, 5, 5, 10, 50, and 1}, and the NSGA-II algorithm
for multi-objective optimization, and the multi-objective op-
timization results are obtained as shown in Figure 6, which
contains 191 pareto solutions. From the pareto solution set
in the figure, it can be seen that after 10,000 iterations, the
three objective values of the optimization objectives have been
stabilized and formed a good image of the three-dimensional
curved surface, and the effective solutions account for 92%
of the total number of solutions, with uniform distribution,
and the above 191 solutions are the effective solutions of
the combinatorial optimization scheme for personalized mass
customization of buildings.

2) VIKOR Situational Analysis
The circular scatter is the set of Pareto solutions obtained by
combining the three objectives of energy consumption, cost
and user preference. The VIKOR method is used to analyze
the optimal combination of solutions under three scenarios by
changing the weights on the three objectives. The following
are the weights set under the three scenario analysis based on
the user perspective,

a. The importance given to cost is greater than the impor-
tance given to preference.

b. The importance given to cost is less than the importance
given to preference.

c. the importance given to cost is equal to the importance
given to preference.

This study set the weight of energy consumption to a fixed
0.2 to position it as a more important objective indicator.
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Figure 6: Multi-objective optimization

Sort 1 2
Quantity of work 18.27 17.96

Projected area 85.33 81.27
Member length 130.54 124.38

Cost 58493.37 56784.77
Energy consumption 51227.56 50321.45

Carbon emission 1316.83 1297.42
Preference 4.56 4.11

Scheme number 131 158

Table 2: Sorting of compromise solutions

In order to make the cost objective and preference objective
produce the perspective of component differentiation, the two
indicators are set to 0.5:0.3, 0.3:0.5, 0.4:0.4 according to the
three cases, cost: preference, respectively.The compromise
solution is the ideal solution of the VIKOR method for solving
the multi-objective optimization model, and any point U in the
Pareto solution is set as the ideal solution, so that the overall
utility is maximized and the individual regret is minimized
VIKOR method can solve the multi-objective optimal solu-
tion.

Assuming v= 0.2, the overall utility and individual regret
of each solution and the ideal solution are calculated to obtain
the comprehensive evaluation index. The comprehensive eval-
uation indexes of the 191 Pareto solutions are ranked, and the
main parameters of the top 2 optimal solutions are shown in
Table 2, in which the No. 131 of the No. 1 ranking and the No.
158 of the No. 2 ranking are the optimal solutions.

Setting the cost, energy consumption, and preference
weights to 0.5, 0.2, and 0.3 in turn, with a compromise
coefficient of 0.5, the results of the compromise coefficient
changes carried out for programs 131 and 158 are shown in
Table 3. The value of v∈ [0, 1] is taken 10 times, and the
stability of the evaluation model is tested by changing the
compromise coefficient v and conducting sensitivity analysis.
Through the above sensitivity analysis, it is found that the
ranking of the 6 alternatives is mainly dominated by Option
131, Option 158, Option 142, Option 156 and Option 137

at different values. Therefore, it can be determined that the
model is insensitive to v perturbations, further indicating that
the method has good stability. From the table, it can be seen
that a change in the trade-off coefficient causes a change
in the ranking results. When the compromise coefficient is
v< 0.2, the ranking result 131>158>other schemes, the best
compromise solution is scheme 131 with scheme 158. When
the compromise coefficient is 0.2 <v< 0.5, the first ranked
schemes are all 158, the compromise solution is scheme 131
with scheme 142 with 137. Therefore, the decision maker
chooses different compromise coefficients and chooses differ-
ent compromise solutions.

B. Custom Building Portfolio Optimization Results and
Analysis
In order to verify the validity and reliability of the algorithm,
this study takes the customized building dimensions of (15,11)
and (21,11) as an example, and firstly solves the optimal
solution for the three sub-objective (cost, energy consumption,
and preference) functions. The experiment confirms that there
is an absolute dominant solution, i.e., all three objective values
are lower than the original combination solution, which is
57834.75, 53481.45, and 3.95, respectively, in comparison
with the original combination solution, indicating that the
original combination solution gets a more reasonable solution
after optimization of the model in this study. When the number
of iterations reaches 10,000, the optimization result tends to be
stable, and its custom building dimensions and its optimiza-
tion objective values are shown in Table 4. 191 solutions are
screened to obtain the four optimal combination solutions of
a, b, c, and d. The four optimal combination solutions of a,
b, c, and d are shown in Table 4. Among the four schemes,
the cost sub-objective (F1) is optimal, i.e., F1 is minimized
to 55283.34 for scheme b. The energy consumption sub-
objective (F2) is optimal to 50805.42 for scheme d, and the
preference sub-objective (F3) is optimal to 4.68 for scheme
a. The optimal combination of the four schemes is shown in
Table 4.

The personalized mass customization building portfolio
solution not only pursues the maximization of cost, energy
consumption, and preference, but also achieves the goal to
get the minimum duration. In this paper, the shortest duration
decision is converted into the shortest duration scheduling
problem, and the NSGA-II algorithm is used to establish a
multi-objective optimization model to iteratively obtain the
objective function value after sigmoid function processing.
At the same time, in order to reflect the principle of compa-
rability, the study in this paper takes the traditional genetic
algorithm and PSO as a comparison item. The results of the
shortest duration decision-making under the iteration of the
three algorithms are shown in Figure 7, and it can be seen
that the objective function values of the traditional genetic
algorithm and the PSO algorithm are 0.78134 and 0.77215,
respectively, while the objective function value of the NSGA-
II algorithm proposed in this paper is 0.744913, which is able
to realize the convergence more quickly. From the shortest
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Sort 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 131 131 158 158 158 158 156 137 142 158
2 158 158 131 142 142 137 158 103 121 137
3 137 137 156 2 131 142 1 142 156 2
4 156 142 2 137 156 156 137 158 137 142
5 142 1 137 2 137 1 142 156 138 2
6 1 156 142 156 2 2 1 2 106 156

Compromise solution 131/ 158 131/ 158 158/ 131 131/ 142 158/ 142 131/ 137 156/ 158 137/ 103 142/ 121 158/ 137

Table 3: Change analysis of compromise coefficient

Option Size 1 Size 2 Size 1 (x,y) Size 2 (x,y) F1 F2 F3

a 16,13 20,21 (45,18) (43,20) 58118.25 52039.61 4.68
b 15,10 19,17 (42,20) (30,18) 55283.34 51809.66 4.37
c 18,12 20,24 (28,21) (27,25) 56935.71 53043.28 4.20
d 13,14 16,18 (30,18) (25,24) 56583.59 50805.42 4.08

Original scheme 15,11 21,11 (31,24) (31,28) 57834.75 53481.45 3.95

Table 4: Customized building size and its optimization target value

Figure 7: Minimum duration decision problem

duration calculation results, the duration of NSGA-II algo-
rithm is only 43 days, which is also smaller compared to the
traditional genetic algorithm and PSO algorithm.

From the construction side, if we want to complete the
construction project as soon as possible, then we also need
to leave enough buffer time for each project, on the one hand,
there is a buffer time in the case of the previous process has not
been completed, and clearly know how long the next process
is still to come. Then the equipment and resources required for
the next process can be prepared in advance, and thus can be
comfortably docked between the next two processes to com-
plete the project. On the other hand, the reason for the buffer is
to cope with the impact of various uncertainties on the project.
The more buffer time is allowed, the more time is available
to prepare and cope with the uncertainty, and the demand for
resources will be reduced accordingly. The buffer time for all
tasks is obtained by NSGA-II algorithm as shown in Figure 8.
The resource usage of 43 days under the minimum duration
can be obtained, in which day 41 has the smallest resource us-
age of 0.067 and day 9 has the largest resource usage of 0.489.
The project executives can prepare in advance by focusing
on projects and activities with high resource mobilization, so

Figure 8: All task buffering schedules

that the executives can take certain measures to cope with the
uncertainties when they occur. In some construction situations
with large resource constraints, the NSGA-II algorithm is used
for decision making and designing, which ultimately results in
a relatively short duration with good goal achievement and a
good buffer against uncertainty risks in construction.

IV. Conclusion
In this study, cost and efficiency optimization of personalized
mass-customized buildings is achieved by integrating BIM
and NSGA-II algorithms. The experimental results show that
the application of this method can effectively find the opti-
mal balance of cost and efficiency. After 20,000 generations
of iterations, 191 effective Pareto solutions were obtained,
demonstrating the stability and uniform distribution of the op-
timization objective with 92% effectiveness. Through VIKOR
context analysis, we propose three different optimization
schemes based on different user preferences, demonstrating
the trade-off between cost and preference. In addition, we
conduct a comparative analysis of the optimization results of
the algorithm under different component sizes to verify the
practicality and flexibility of the method.

This method can help construction managers to efficiently
schedule resources, shorten construction period and reduce
cost. This study demonstrates the value of BIM and NSGA-
II algorithms in the field of custom construction and provides
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new ideas and methods for cost-effective optimization of
future construction projects.

BIM and NSGA-II algorithm based mass customized build-
ing assembly optimization system and simulation design study
uses a simple case study to confirm the feasibility of such a
scheme. However, in the selection of research objects, only
PC components were targeted and all assembled components
were not considered in an all-round way. In the future re-
search, it is necessary to continue to refine the construction
mode of database management, improve the ability of in-
formation management, better provide the basis for decision
makers, and enhance the current stage of the building man-
agement system to be more scientific and operational.
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