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Abstract The optical fiber systems have grown in response to the increasing demand for ultra-high-speed data transmission
in fiber telecommunications system. Yet, the problem of the losses in optical fiber has limited the fiber system performance
such as, dispersion, dispersion slope, and non linearities. This study proposes a mitigation techniques for fiber-optic system
losses based on artificial intelligent algorithms. In this study, the proposed method produces a good system performance with
maximum compensation for fiber linear and nonlinear losses.
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I. Introduction
A. Fiber pulse Propagation

The pulse propagation that have electromagnetic field in-
side the optical fiber is controlled by the wave equation,

Maxwell’s as shown in Equation 1 . Equations provide as a
general model of electromagnetic field transmission through
an optical fiber, from which the wave equation [1] can be
extracted:
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where c is velocity of light, E is electric field and p is induce
polarization.
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1√

(µ0ϵ0)
,

where µ0 is permabilty and ϵ0 is permitivity.
A phenomenological relationship can frequently be used.

However, typically, a quantum-mechanical examination of the
link between Er and Pr is necessary as shown in Eq. (2) [2]:
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where the parameter X(j) is the jth represents the order
susceptibility, the term experassion j=1 illustrates the linear
relationship. It alters the fiber’s attenuation coefficient and
refractive index [3].

Moreover, SiO2 has a small second order susceptibility,
which prevents optical fibers from generating second order
harmonics. The vulnerability of the third order, X(3), is in
charge of events like third order harmonic generation, Nonlin-
ear refraction, and four-wave mixing (Kerr effect) [4].

This last result shows how the refractive index fluctuates
with intensity, as in Eq. (3):
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The value of n(ω) expresses the part of the linear effect as
contribution, the parameter n2 represents the nonlinear-index
part, and related to X(3).

If nonlinear influences are taken into account, the induced
polarization is created by combining two parts: the first part
is the linear PL(r, t), the second part represents the nonlinear
part PNL(r, t), P (r, t) = (PL(r, t) + (PNL(r, t).

The nonlinear and linear coefficients are related to the
electrical field by [5]:
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However, the unreliable term is to be considered as a
minor a change to the overall polarization to conduct a more
condensed analysis. In that regard, it makes sense to start
by figuring out how to solve the electrical field in a linear
medium.

That is, to take into account the field’s wave equation along
the propagation axis (z), in accordance with the analysis as:

ẼZ(
−→r , ω) = A(ω)F (ρ)e±imϕeiβz. (6)

Wherein the E field represents the electrionik field, the z
component represents the Fourier transform , A represents the
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normalization constant, and the parameter β is the constant
proliferating and m is an integer [6].

Additionally, when thinking about the transmission of short
pulses, nonlinear effects in optical fibers are especially crucial
(from 10ns to 10fs). Both nonlinearities and group-delay
dispersion have an impact on the shape and spectrum of these
pulses as they pass through the fiber.

According to above analysis, this constructs the wave equa-
tion, which takes into account both linear and nonlinear effects
[7].

The scalar nonlinear Schrödinger equation (NLSE) can be
used to simulate how an electric field propagates in an optical
fiber without taking into account polarization [8]:
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However, it is well known that a wide range of physical
phenomena are described by (NLSE), such as modulational
instability of the water waves, the movement of a very thin
vortex filament in a helical pattern, the transmission of heat
pulses in anharmonic crystals, the nonlinear modulation of
collisionless plasma waves, and a light beam in a color-
dispersive system self-capturing [9].

The nonlinear Schrodinger equation is a general wave equa-
tion that first appeared in the research on the propagation of
unidirectional wave packets in an energy-efficient, dispersive
medium.

The Kerr effect is a feature that occurs in some dielectric
components wherein the refractive n index rises according to
the electric field’s square. The refractive index can then be
expressed as in [10].

A pulse (peak power represent amplitude square, wave,
number, and k) moving through a fiber of length L experiences
a phase change which is power reliant due to the power
dependency of the refractive index [11]:

ϕ(P ) = ϕ1 + ϕnl = nokLeff
P

Aeff
m. (8)

The Effective length Leff = 1/α [1-exp(-α L)] with fiber
loss coefficient α accounts for fiber losses. Howver, both of
the polarization properties of the test fiber and the polarization
state of signal affect the polarization parameter m.

B. Strucure of ANN
During the information-processing stage of neural networks,
which are made up of trillions of neurons (nerve cells), the
exchange of electrical pulses between cells, known as action
potentials, takes place. Artificial neural networks (ANNs),
which are brain-inspired algorithms, are used to anticipate
issues and estimate intricate patterns. The deep learning
method, also known as ANN, was founded on the idea that
biological neural networks exist in the human brain. ANN was

Figure 1: Single-layer feed-forward network [10]

Figure 2: Multi-layer feed-forward networks [9]

developed in an effort to replicate how the human brain works
[12], [13]. Artificial and biological neural networks function
in remarkably similar ways, despite certain differences; that
is, only structured and quantitative information is accepted by
the ANN algorithm.

However, in a single-layer feed-forward network, the inputs
and outputs are connected by a number of weights in a single
layer. Each input is linked to another by weight-carrying
synaptic connections.

It is considered to be a feed-forward network, referred to as
a "feed-forward system" since information is only transmitted
from input to output, as shown in Figure 1.

Multiple layers are present in multi-layer feed-forward net-
works. In addition to input and output layers, this class of
networks’ architecture also includes one or more intermediate
levels known as hidden layers, as shown in Figure 2.

II. Results and Discussion
A. Artificial Intelligent Compensator

The field of neural networks has been a significant growth in
its applications in fiber optic systems in the recent years. The
usage of neural networks is meant to address a wide range
of challenges encountered in fiber optic systems, including
nonlinear compensation, correction for dispersion of colors
and polarization mode divergence.

Several neural network architectures have been used in
these applications, such as convolutional neural networks
(CNNs), feedforward neural networks, and recurrent neural
networks. These architectures have been used to model these
defects and improve the performance of optical fiber systems.
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Activation Function First Dataset Second Dataset
Saturable A1 (92 ± 1)% (99.14±1)%
Saturable A2 (94 ± 1)% (99±1)%

Rectified linear unit (93.68 ± 1)% (98.22±1)%
hyperbolic tangent (94.6 ± 1)% (98.16±1)%

Sig.1 (96.62 ± 1)% (96.30±1)%

Table 1: Results of ANN

It should be noted that although neural networks offer a
promising solution to compensate for the nonlinear weakness
in optical communication, there are also some limitations to
their use. One major limitation is the need for a large amount
of data to train the network. In addition, the complexity of
the network and the computational resources required can also
be limitations. However, despite these limitations, the use of
neural networks to compensate for nonlinear weaknesses in
visual communication is a promising area of research which
is expected to meet a continued growth in the future.

ANN was only utilized as a comparison criterion in this
section. As a result, the artificial neural network was used
to classify the photos. These photos contain a signal which
has been digitally altered using an algorithm like phase-shift
keying or quadrature amplitude modulation which is depicted
in a constellation diagram. It depicts the signal like a two-
dimensional xy-plane scatter diagram in the complex plane at
symbol sampling instants

B. Artificial Intelligent Results

The convolutional neural network (CNN) was used to predict
the performance of optic fiber. Table 1 and Figure 3 illustrate
the performance of fiber communication system wherein the
system enhancement achieved by using intelligent algorithm
across fiber channel to reduce the fiber losses. CNN was
trained on a dataset (1, 2), representing different parameters
such as laser carrier power, data power, fiber nonlinear coeffi-
cient, fiber core diameter, refractive index for fiber core and
cladding chromatic dispersion, fiber absorption coefficient,
and different system parameters. The data set 2 for fiber
communication system gives a better performance, as shown
in Table 1. The network was able to learn complex nonlinear
relationships in the data and to generalize well to unseen
measurements of the results for the simulated link seems to
have the following parameters with a total length of 400 km
of typical single mode fiber, as shown in figures below. γ =
1.2 W/km, α = 0.2 dB/km, chromatic dispersion CD = 16
ps/nm/km. Moreover, a model for evaluating of simulations
was used for various values of fiber.

Table 1 illustrates the results of validation of the first
datasets and second dataset.

This compensation will enhance the overall performance
system for different bitrate reach to the range from (40 Gb/s
-80Gb/s), as shown in Figures 3 and 4.

It can be seen that the performance of the system is at data
rate 80Gb/s for 400 Km fiber length, as shown in Figure 4.

Figure 3: Illustrate optical fiber communication system with
intelligent compensator at 40 Gb/s

Figure 4: Illustrate optical fiber communication system with
intelligent compensator at 80 Gb/s

III. Conclusions
As the need for channel capacity rises, fiber nonlinearity has
been discovered to be one of the reasons of limiting the
optical fiber systems. This research discusses the way the
fiber nonlinearity affects optical fiber system performance.
The proposed work produces an efficient fast method for fiber
loss compensation. In this method, it can be noted that the fiber
system performance at data set 2 with a saturable absorption
nonlinear activation function gives preferred performance.
This is because the intelligent algorithm can compensate the
nonlinear losses, such as nonlinear phase shift and linear
losses like absorption and dispersion losses wherein the sys-
tem reaches up to 80 Gb/s for 400 Km fiber length.
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Large-scale optical neural networks based on photoelectric multiplication.
Physical Review X, 9(2), 021032.

[9] Fang, M. Y. S., Manipatruni, S., Wierzynski, C., Khosrowshahi, A., &
DeWeese, M. R. (2019). Design of optical neural networks with component
imprecisions. Optics Express, 27(10), 14009-14029.

[10] Paraschiv, M., Padrino, R., Casari, P., & Anta, A. F. (2020, October).
Very Small Neural Networks for Optical Classification of Fish Images and
Videos. In Global OCEANS 2020: Singapore–US Gulf Coast (pp. 1-7).
IEEE.

[11] Zhang, H., Gu, M., Jiang, X. D., Thompson, J., Cai, H., Paesani, S., ... &
Liu, A. Q. (2021). An optical neural chip for implementing complex-valued
neural network. Nature Communications, 12(1), 457.

[12] Wang, T., Ma, S. Y., Wright, L. G., Onodera, T., Richard, B. C., &
McMahon, P. L. (2022). An optical neural network using less than 1 photon
per multiplication. Nature Communications, 13(1), 123.

[13] Abbas Al-Huesini, L. M., Al-Mudhaffer, R. H., Hassan, S. M., & Hadi,
N. R. (2019). DMF Ameliorating Cerebral Ischemia/Reperfusion Injury in
Meal Rats. Systematic Reviews in Pharmacy, 10(1), 206-213.

176


