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Abstract As the information era advances, robotic intelligent sorting is being applied more and more in the logistics sector.
As such, studying vision-based autonomous identification, localization, grasping, and sorting mobile sorting robot systems
is crucial. In order to accomplish the function of motion ranging and positioning, this paper uses a camera mounted at the
end of an industrial robot to continuously shoot single-point images of various locations within the world coordinate system.
The parameters obtained are similar to those of binocular vision ranging. The vision library (OpenCV for Python) is used to
process the image data for an automatic sorting operation of cylindrical workpieces that is currently in place. The point-by-point
sampling calculation is carried out within the robot’s running trajectory. According to the experimental results, the monocular
motion vision ranging and localization system performs well, with an average localization error of less than 4%. The ranging
method can also meet accuracy requirements under some conditions, which is useful in lowering the automatic sorting system’s
upgrade costs.

Index Terms industrial robot, sorting system, mobile vision, motion ranging, motion
localisation, ranging experiments

I. Introduction

AUTOMATION technology is growing in popularity as
science and technology advance continuously today, and

mobile sorting robots are also being developed bit by bit.
Applying vision and two-dimensional code technology to the
sorting of express mail can significantly increase its efficiency
while lowering labour intensity and fostering the growth of
the automation sector [1]–[4]. The four-step method of sort-
ing involves forming a picking action, walking or handling,
classification, and picking information [5]. Manual sorting,
mechanical sorting, semi-automated sorting, and automatic
sorting are common sorting techniques. Automatic sorting, in
contrast, can be continuous, high-volume work, lower error
rate, and the fundamental realisation of unmanned [6], [7],
which is becoming increasingly important to the logistics
centre.

Robots can now modify their operating object and tools
at will, responding to changes in their surroundings thanks
to advancements in machine vision and artificial intelligence
[8]. When sorting an express in the courier industry, it is not
enough to distinguish it based only on its colour and shape;
instead, the two-dimensional code on the express must be
recognised. Robotic intelligent sorting has gained popularity
in the logistics industry as a way to improve sorting accuracy
and efficiency. Conventional sorting techniques are frequently
limited by the size, shape, and material of objects. However,
intelligent logistics sorting robots that utilise machine vision

can effectively sort a variety of workpieces by overcoming
these limitations with the use of visual perception technology.
The goal of this project is to increase the adaptability and
flexibility of industrial robots that sort objects in complex
environments by equipping them with cameras and utilising
machine vision technology to perform autonomous identifica-
tion, localization, grasping, sorting, and other crucial controls
[9].

This paper investigates the use of machine vision tech-
niques for object localization and motion ranging in order
to address the challenge of automatically sorting cylindrical
workpieces. We have successfully realised monocular mo-
tion vision ranging and localization by using point-by-point
sampling computation within the robot trajectory in conjunc-
tion with the vision library (OpenCV for Python) to process
the image data [10]. The experimental results show that the
method can achieve the required accuracy under certain con-
ditions, with an average positioning error of less than 4%. This
finding has broad application potential and offers dependable
technical support for the real-world use of intelligent logistics
sorting robots.

The current state and challenges of robot application in the
field of logistics sorting will be briefly discussed in this paper,
which will be followed by a thorough examination of the
machine vision-based control system of an intelligent logistics
sorting robot, which includes the essential technologies of
autonomous identification, localization, grasping, and sorting.
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The study’s experimental design and methodology, as well as
an analysis and discussion of the findings, are then covered. In
conclusion, we provide an overview of the study’s key findings
and speculate about potential future research paths in the area
of intelligent logistics sorting robot control.

II. Overall Mobile Sorting Robot System Scheme Design
A. Mobile Sorting Robot Manipulator Design

The arm and the end-effector are the two components that
make up the manipulator. Figures 1 and 2 display the arm and
end-effector’s 3D modelling.

Figure 1: 3D modeling diagram of robotic arm

Figure 2: 3D modeling of end effector

Starting from the bottom of the arm, servos 1 through 5
control the arm’s movement on the Z-axis, servos 2 and 3
control the arm’s positioning to the fastener’s centre in the
working platform, servo 4 controls the end-effector’s rising
and lowering, and servo 5 controls the hand claw’s attitude.
This gives the robotic arm five degrees of freedom. The
screw’s lead should be as large as possible to accommodate
the rapidity of rising and lowering; the design lead is 2 cm,
and the stroke is 8 cm. 3D printing is used to manufacture and
assemble the end-effector’s component parts. The end-effector
fixture has a clamping torque of 1 N-m and is pneumatic [11].

B. Mobile sorting robot programme design
Three main components make up the mobile sorting robot
system: the hardware, software, and mechanical structure. The
robotic arm, end-effector, and other components make up the
majority of the mechanical structure. The primary controller,
camera, servo, LCD screen, air pump, air claw, motor drive,
wireless communication module, upper computer, and so on
make up the hardware. The self-developed image processing,
visual positioning algorithm, and control programme make up
the software. The robotic arm control programme and self-
developed image processing and visual positioning algorithms
make up the software. Figure 3 displays the 3D modelling
diagram for the planned mobile sorting robot system.

Figure 3: 3D modeling of mobile sorting robot

The robotic arm is represented by 1 in Figure 3, the end-
effector by 2, the working area by 3, the camera by 4, and
the main controller by 5. The working object of the system is
a number of express pieces that have been labelled with QR
codes. Each express piece has a QR code that covers specific
information about it, and at the express piece stacking point,
there is a QR code label that corresponds to the information on
each express piece. The robot’s job is to locate the QR code on
the express piece and then move it to the appropriate position
at the express piece stacking point.

The working area of the system is the field of view captured
by the fixed, elevated camera. A number of express mail
boxes are arranged at random throughout the workspace. The
camera processes the gathered image data to determine the
image coordinates of each express mail box’s centre while
also identifying the information found on each box’s two-
dimensional code label. The robotic arm is positioned to the
centre of each express mail directly above using the inferred
image coordinates to the robotic arm servo control angle
transformation algorithm, allowing the task of grasping and
sorting to be finished [12].

III. Camera Distance Measuring Principle
A. Monocular measurement
As seen in Figure 4, the triangular similarity principle is
the fundamental idea behind dimensional measurement of an
object using a monocular camera.

The vertical line in Figure 1 between the middle shooting
plane and the imaging plane represents the camera’s main
optical axis; the symbol d represents the distance between

8



Song: Research on Intelligent Logistics Sorting Robot Control Based on Machine Vision

Figure 4: Principle of monocular camera imaging

the lens and the shooting plane; the symbol f stands for
the camera lens’s focal length; the actual measured length
of the photographed line segment is represented by L; and
the imaged length on the imaging plane (photoreceptor) is
represented by L′. Using the comparable triangle formula, we
can obtain:

f

d
=

L′

L
. (1)

According to the small hole imaging principle, a rectangular
region in reality and a pixel of the camera are proportionate
to one another, assuming that the camera is not distorted or
has an assembly error. The calibration process of the camera,
which requires the definition of four coordinate systems,
includes the image pixel coordinate system Cp, the physical
coordinate system C of the image, the camera coordinate
system Cc, as well as the global coordinate system Cw—is the
solution to the correspondence. The pixel coordinate system
and the physical coordinate system of the image can be
transformed using the following methods: xp

yp
1

 =

 1
dx 0 x0

0 1
dy y0

0 0 1

 x
y
1

 , (2)

where each pixel’s physical dimensions on the x− and y−axes
are, respectively,dx and dy. The camera coordinate system
(xc,yc,zc) considers the x− and y−axes of the image’s phys-
ical coordinate system to be the origin oc for the camera’s
optical centre and the zc axis for the optical axis. The specific
transformation relations are as follows.

zc

 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0



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1

 . (3)

Developed to explain camera position, the world coordinate
system (xw,yw,zw) can also be applied to describe how objects
are positioned in the actual world. The translation matrix T
and rotation vector R of the camera’s outer parameters, which
are as follows, can be used to convey how the world coordinate

system and the camera coordinate system relate to one another
[13]: 

xc

yc
zc
1

 =

[
R T
0T 1

]
xw

yw
zw
1

 . (4)

Up until now, combining Eqs has provided the relationship
between the world coordinate system and the image pixel
coordinate system. From Eqs (1) to (4), we have

zc
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zw
1

 . (5)

When zc is known, monocular ranging can be used to
establish the conversion relationship between world coordi-
nates and image coordinates using a calibrated object. On the
other hand, when the focal length of the camera is known, it
becomes impossible to solve for the depth information of the
object in the picture [14].

B. Binocular distance measurement
The binocular camera is a depth camera that resembles the
structure of a human eye. It operates on the basis of binocular
parallax, with the left and right cameras positioned in the same
plane. As illustrated in Figure 5, the imaging parallax is used
to calculate the relative distance between the binocular camera
and the observation point in the world coordinate system.

Figure 5: Principle of binocular ranging

The photocentric distance, also referred to as the baseline
b, is the distance measured between the projected centres of
the two cameras in Figure 2, which shows that two cameras
of the same model are positioned parallel to one another.
Assuming that the two cameras’ imaging planes are on the
same plane, the projected points on the imaging planes of the
target P (xc, zc), which is a point in the scene, are Pl(xl, yl)
and Pr(xr, yr), respectively.
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The similar triangles principle is used to illustrate this once
the camera’s focal length, f , is known:

zc

f
=

y

y1
=

y

yr
=

x

x1
=

x− b

xr
. (6)

We can get the formula for solving xc,yc and zc from the
Eq. (7): 

zc =
f ·b

x1−xr
,

xc =
zc·x1

f = b+ zc·xr

f ,

yc =
zc·y1

f = zc·yr

f .

(7)

The depth z and the parallax value are inversely correlated,
according to Eq. (7). When the distance increases, the par-
allax value decreases. As the distance increases, the parallax
value decreases. It is known from the displacement difference
x that the higher the camera pixel, the more accurate the
horizontal displacement difference x can be obtained at the
same distance, and the higher the ranging accuracy. We need
to know the parallax, x1 − xr to solve for the depth z at a
position P , one needs to know the focal length f of the camera
and the distance b between the left and right cameras. After
determining the depth, one can determine x and y, and then
one can determine point P ’s spatial location [15], [16].

C. Motion Stereo Ranging
Even though binocular cameras have superior characteristics
than monocular cameras, direct image prediction and depth
estimation from monocular cameras is also a hotspot for
application due to advancements in deep learning and image
processing algorithms. It is evident from the above binocular
ranging principle that positioning and ranging are accom-
plished by both binocular and monocular vision through the
use of the triangular similarity principle. In some circum-
stances, binocular vision technology can be thought of as a
monocular camera that creates parallax by taking pictures at
various spatial locations in order to solve depth information.
This paper presents a motion vision system that manipulates
an industrial camera in a specific way, takes multiple pictures
of the same object at different points in the world coordinate
system, and uses pixel-matching to extract parallax, which can
be utilised to solve the object’s depth information [17]. The
schematic diagram of the camera that is being shot at different
locations is shown in Figure 6.

The industrial camera is mounted on the end joint of the
industrial robot to follow the trajectory, which is a linear
motion in the horizontal plane. The focal length of the camera
is denoted by f , and the point in the world coordinate system
is represented by Pw in Figure 6.

The baseline distance formed is the distance in the world
coordinate system between the sampling point and the previ-

ous sampling point bn =

√
(xn − xn−1)

2
+ (yn − yn−1)

2.
The camera records Pw points for every distance travelled.
The imaging coordinates of the four points at various locations
in the figure are p1, p2, p3, p4. Figure 6b illustrates how the
camera records points P and P ′ while moving from left

Figure 6: Schematic diagram of camera shooting at different
positions

to right, allowing for the generation of multiple parallaxes
d1, d2, ..., dn [18], [19].

d1 = |x11| − |xr1|
d′1 = |x′

11| − |x′
r1|

d1 = |x12| − |xr2|
d′2 = |x′

12| − |x′
r2|

...
dn = |x1n| − |xrn|
d′n = |x′

1n| − |x′
rn|

(8)

Eq. (8) is modified by substituting the average of all paral-
laxes to get:


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[
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(9)

IV. Experimental Results and Analysis
A. Visual localisation experiments
The working platform is divided into four areas, and only one
express can be placed in each area in order to simplify the
visual algorithm processing. The camera uses the four areas
to classify the data it collects, making the process easier and
more effective. After turning on the system, the camera begins
gathering data, and the controller begins binarism of the image
data [20], [21]. Four expresses with QR codes are positioned
at random throughout the allocated area. Apply for 8 cache
space, which is used to store the X and Y coordinates of
the four express white pixel points, respectively. Since the
F4 controller can only read memory at a slow speed and can
only cache up to three regions at once, the image is processed
twice in its entirety. Subsequently, retrieve the middlemost
pixel’s X and Y coordinates for every region, and transfer the
information to the host computer for visualisation. The actual
location of the express is displayed in Figure 7 which has a
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resolution of 480 ∗ 480. The range of X and Y is therefore
from 0 to 480. Table 1 displays the location information for
the express’s centre point.

Figure 7: Actual location map of express

(x1, y1) (x2, y2) (x3, y3) (x4, y4)
(145,90) (320,110) (95,366) (390,350)
(150,90) (325,120) (90,366) (395,355)
(156,90) (318,120) (98,366) (389,356)
(148,92) (320,120) (105,368) (388,355)
(154,90) (322,120) (98,357) (394,355)

Table 1: Center point position data of parcels

B. Experiment on robotic arm end positioning and
gripping

Once each piece’s visual positioning coordinates are known,
the robotic arm’s end can be precisely positioned just above
the centre of each piece using a transformation algorithm that
maps the derived visual positioning coordinates to the robotic
arm servo’s angle control pulses [22], [23].

The robotic arm places itself exactly above the centre of
each shipment, grasps and carries the shipments, sorts the
shipments to the designated shipment stacking point, and
completes the experimental task based on the information
on the identified 2D code label on each shipment. Figure 8
illustrates how the robotic arm’s end grips and handles objects.
Following positioning to the target point in Figure 8a, the hand
claw’s end lowers; after catching the shipment in Figure 8b,
the hand claw rises; in Figure 8c, the robotic arm carries the
shipment to the target position; and in Figure 8d, the hand claw
is released.

C. Motion ranging

OpenCV offers three common matching algorithms, BM,
SGBM, and GC, to solve the parallax maps at various po-
sitions after the camera has been calibrated [5]. The camera
moves 100 mm to measure a workpiece with a diameter of
60 mm and a height of 10 mm under one condition, as shown
in Figure 9, which also includes the parallax depth map and
the on-site photographic map. Table 2 displays some of the
experimental measurement data. These three algorithms will
be chosen for testing in the experiments.

.

Figure 8: End grabbing and handling action diagram of the
robotic arm

Figure 9: Workpiece diagram

The analysis of the experimental data reveals that, when
shooting under varying object distances, the camera will im-
pact the calculation of size and depth; however, within a cer-
tain range, it can achieve similar binocular ranging function.
The experimental error can be influenced by various factors,
including light intensity, background texture and colour, and
parallax matching algorithm. Subsequent engineering applica-
tions aim to determine the optimal parameters and algorithms
in various environments. For example, in the experimental
environment, where object distances range from 140 to 160
mm, more precise ranging and positioning error is achieved.

V. Conclusion

The industry typically uses a fixed camera for image process-
ing to increase the working flexibility of industrial robots.
However, this paper creatively installs a monocular camera on
the robot joints for motion stereo ranging, further increasing
the processing flexibility of the robot. The monocular camera
is moved in order to perform the experiment, and to some
extent, the binocular camera ranging function can be realised.
Fast workpiece positioning and grasping can be achieved in
production applications by scheduling the camera’s mobile
ranging trajectory to fall inside the workpiece grasping tra-
jectory. This monocular vision ranging technique has a high
practical application value in the production line where the
accuracy requirement is not strict, and it lowers the cost and
difficulty of developing the robot vision system.
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Actual distance/mm Calculate distance/mm Relative error/% Measurement diameter/mm Calculate diameter/mm Relative error/%
100 90.55 9.45 60 58.65 2.25
110 98.48 10.45 60 57.49 4.21
120 113.66 5.28 60 58.48 2.56
130 122.55 5.52 60 57.85 3.56
140 122.84 5.52 60 59.23 1.52
150 153.22 1.66 60 60.58 1.85
160 163.89 2.45 60 57.86 4.23
170 187.52 5.21 60 58.25 2.89
180 188.31 5.12 60 58.21 2.99
190 198.45 4.85 60 59.87 0.45

Table 2: Measurement results under different ZCs
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