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Abstract Gait parameter evaluation is crucial while ascertaining the health status of participants and formulating therapeutic
interventions. The design and application of the smartphone technique for evaluating and investigating participants’ gait
parameters are presented in this paper. New methodology to investigate the spatiotemporal parameters of healthy individuals:
step time, stride time, cadence and walking speed, through insole sensors and smartphones is introduced in this work. The
aim of this research is firstly to examine the performance of a couple of Android smartphones (one per leg) two Android
smartphone compared to an insole sensor in estimating spatiotemporal gait parameters. Secondly, the research tests the
validity of a tri-axial accelerometer of a smartphone to quantify gait features. Spatiotemporal gait parameters of twenty
healthy subjects (10 male, 10 female, age >18) were measured using insole sensors and smartphones. Five trials of walking
were requested from each subject. The data were obtained from the insole sensors and smartphones. Six statistic measures:
Pearson correlation coefficient, linear regression, mean, standard deviation (SD), p-value, and Bland-Altman, were employed
to compare the validity of the smartphones. The coefficient of correlation according to the developed approach was 0.79-0.92
for left and right legs, respectively. On the basis of the results obtained by the study using four parameters: step time, stride
time, cadence, and walking speed, it was noted that there was consensus between smartphones and insole sensors in gait
parameter measurement. In addition, these findings illustrated that the smartphone sensor is effective in measuring healthy
adult participants’ spatiotemporal gait parameters. Accordingly, it is capable of generating trustworthy data without having to
invest in costly equipment. Lastly, the established technique could assist an expert in objectively and effectively assessing gait.

Index Terms smartphone, spatiotemporal, insole sensor, standard deviation (SD)

I. Introduction

The research of human gait is regarded as an important
aspect of medical diagnosis concerning several aspects

of individuals’ health. The knowledge of human gait has
numerous applications in exercise training and hence in re-
habilitation and therapy [1]–[3]. Various factors, including
pathological disease or traumas, can influence the individuals’
walk or locomotion, either permanently or for a specific time
period [4]. Spatiotemporal gait parameters are connected to
negative health problems like falling risk [5], [6].

Gait analysis researchers in recent times employed various
devices to analyze gait parameters to research the risk of
falling. There are various technologies employing insoles in
specially crafted shoes [7]. A sensor using an insole was
found appropriate to calculate human movement parameters
like stance and swing phases [8]. The insole sensor is also
capable of measuring several spatiotemporal gait parameters,
such as swing time, stride length, step time and cadence [9].
Other research employing an insole pressure sensor data allow

for the planning of means to lower plantar pressure in diabetic
patients [10]. A smartphone app has demonstrated that an
accelerometer sensor can be employed for gait parameter
analysis. The smartphone has been proven to be a good tool
for the monitoring of human movement [11]. Other research
has indicated that a smartphone-based fall detection system
can be employed for such various issues as fall detection [12]
and rheumatoid arthritis [13].

[14] created a procedure to confirm the smartphone ac-
celerometer for measuring the spatiotemporal parameters of
gait using other equipment like GAITRite. 34 volunteers were
included in their research. Volunteers walked along a 10-
m distance with slow and fast speeds while using a smart-
phone. Step length, step time, gait speed, and cadence were
all measured using smartphones and then cross-validated by
GAITRite. Their findings were assessed with the correlations
coefficient (CC). A mean CC among the smartphone-based
and GAITRite-based systems were 0.89, 0.98, 0.96, and 0.87
for step length, step time, gait velocity, and cadence, respec-

1



Alramadan, Hussain and Al Sailawi: An efficient study comparing the measure of spatiotemporal gait

tively. [15] discussed a way to assess the concurrent validity
of a smartphone. In that research, 16 healthy subjects were
employed and the smartphone was placed first on the lower
back and second on the sternum.

The reference standard and the smartphone were then em-
ployed to measure vertical ground reaction forces and vertical
acceleration. The proposed method was tested in this study
using the correlation coefficient and standard error. Good reli-
ability (ICC ≥ 0.75) was found, demonstrating Pearson corre-
lation coefficients between vertical ground reaction forces and
vertical acceleration. The authors determined that the smart-
phone might be considered a valid and reliable instrument to
quantify the sit-to-stand movement in healthy elderly. Later
on, [16], introduced a valid and effective way to determine
spatiotemporal gait parameters from smartphone data, rely-
ing on an accelerometer and 3000E F-scan. In the current
research, 10 young adults walked thrice with two smartphones
and two insole sensors. Three parameters: cadence, step time,
and stride time were estimated. The research indicated that the
smartphone accelerometer sensor may be a valid and efficient
gait assessment tool. Recent validation data for smartphone
typically employ a single phone to measure gait parameter. In
addition, these studies have utilized one or two measurement
tools to test performance outcomes. Therefore, the aim of this
study is to: (1) examine two Android smartphones for the mea-
surement of spatiotemporal gait parameters (step time, stride
time, cadence and walking speed) and (2) test the validity of
a smartphone-based tri-axial accelerometer to measure gait
features.

II. Description of Resarch Methodology
In this study, 20 healthy subjects were recruited for the out-
lined method to examine the spatiotemporal parameters: step
time, stride time, cadence, and walking speed of the insole and
smartphone in healthy individuals.

A. Participants
The twenty healthy adult subjects (10 males and 10 females)
ranged in age from 20 to 40 years. The remaining parameters
of the 20 participants were mass and height 60 to 95 kg and
156 to 180 cm, respectively. All of the participants had the
capability of walking steadily for a minimum of ten meters
with or without aid or assist devices. Demographic data was
acquired from each subject; i.e., age, gender, height, weight
and shoe size. All the subjects provided written permission
at the initiation of the trials. A human ethics application was
granted by the Human Research Ethics Committee of the
University of Southern Queensland.

III. Equipment
During the research, every subject used an insole sensor
3000E F-scan inside properly fitting shoes, linked to a com-
puter for collecting the data via the F-Scan research software.
Simultaneously, both the subjects had two smartphones, each
Samsung Galaxy S9 with the height of 5.81" (147.7 mm),
width of 2.7" (68.7 mm), depth of.33" (8.5 mm), weight of

163 g and screen length of 5.8" (147.3 mm). The phones
were held in both legs as displayed in Figure 1a and 1b.
Smartphones were put here since the higher region of the
body is complex; therefore, the method of collecting precise
estimates is extremely challenging.

Figure 1: a and b show an example for one person who wore
insole sensors and smartphones during the test

Figure 2 illustrates an example of one-step starting from
the left side with heel strike, flat foot, midstance and toe off.
All participants walked on a 9 m straight course, with all gait
measuring equipment (insole shoes and smartphones) on, five
times. Each time (trial), the data were collected separately for
each device and each leg. Participants were instructed to walk
normally, and to begin and end walking when they heard the
tester’s command.

Figure 2: An example of flat foot, midstance and toe off
pressure characteristics

A. Procedures
In this study, an effective approach was employed to investi-
gate the spatiotemporal parameters of healthy individuals with
the insoles and smartphones and compare and analyze spa-
tiotemporal gait parameters in smartphone and insole sensors.
The researcher applied a defined protocol. Every participant
signed an agreement form. Then, describe the walking path,
starting and ending point and how to hold the wires of the
insole sensors to each person. Subsequently, information was
taken for all the participants. They were requested to begin
and end walking upon hearing the instructor provide the
instruction.

B. Data collection and processing
Consistent data were sought for the spatiotemporal parameters
of gait: step time, stride time, cadence and walking speed em-
ployed in the study. Foot strike location for each subject was
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confirmed to be on the correct way in the shoes after selecting
the appropriate shoes size. Each trial was the average of three
middle steps (steps 5-7). From the Tekscan data-acquired foot
pressure map and from the smartphone accelerometer plots,
step 3 of the middle steps was utilized in order to measure the
stride time, step time and cadence, as represented in Figure 3.

Figure 3: a and b show the heel strike insole sensor and heel
strike for the fifth step, respectively

The nine steps acceleration data for normal walk are shown
in Figure 4. The device, smartphone and insole sensors test
were performed simultaneously. The variation between them
was noticed. We saw this variation in the insole sensor and
accelerometer sensor patterns like noise and negative signal in
accelerometer sensors but nothing similar to that in the insole
sensors reading.

Figure 4: Heel strike start with the positive peaks acceleration
from smartphone accelerometer

C. Statistical analysis
Blind-Altman plots were employed to present the bias and
limit of agreement (LOA) between smartphone sensor and
insole sensor data as well as to assess the constructed study
method.

In order to analyze the validity between insole sensors and
smartphones for every trial, Pearson correlation was employed
for this analysis. We utilized the following value to verify the
consistency between the device results: .90 to 1.00 as very
high, 0.70 to 0.90 as high, and 0.50 to 0.70 as moderate, 0.30
to 0.50 as low, and below 0.30 as insignificant. These mea-
sures and ranges have been utilized by several studies [17]–
[19]. According to Figure 4, it was observed that the insole
pattern in the forward and upward directions was relatively
more stable for most of the time since it relies on the leg
pressure sensor.

But with the smartphone, the most of the patterns had
relatively more stable steps in 5-7 since the accelerometer
data relies on the walk action. That is, walking speed varies

at the start of walking and while preparing to halt. Further,
the accelerometer data from the smartphone in the direction
of movement and upwards revealed a little noise and negative
readings in the pattern, even though we utilized only the
positive readings. The sign change of the positive peak in
the acceleration signal in the anterior-posterior direction is
considered as the moment of the foot contact [20]. In step time
and stride time, the mean of the time of the three middle steps
(5-7) steps was computed.

That is, in this paper, we calculated the time of three steps
and then divided it by 3, and likewise for stride time but for
three strides. Cadence processing was done in a similar way
as [21] but we changed the time to seconds since the time of
both devices (smartphone and insole sensor) was in seconds.
To test the accelerometer’s capacity to identify the steps taken,
the subject walked 10 meters based on lap distance on a flat
indoor floor.

IV. Experiment Results and Discussions
The aim of this study was to compare and measure the validity
of insole sensor and smartphone sensors’ spatiotemporal gait
parameters. For that aim, in this paper, a series of experiments
were performed to assess the performance of the smartphone
device to investigate the spatiotemporal parameters.

In this experiment twenty participants: healthy young adults
(10 males and 10 females; aged between 20 and 40 years;
mass and height 60 to 95 kg and 156 to 180cm, respectively),
were recruited and they completed the testing in the laboratory
setting successfully. Various sets of parameters: step time,
stride time, cadence and walking speed, were obtained in this
study. 5 trials were performed by each subject. Subsequently,
spatiotemporal gait parameters were obtained and using two
smartphones and two insole shoes sensors. In trials, the smart-
phone displayed comparable results with that of the insole.
The findings of every subject (left and right) were presented as
mean and standard deviation (SD), as is evident from Tables 1
and 2. These are the statistical terms that have been employed
by the majority of the researchers to check their methodology
[14], [22].

All of the experiments were analyzed using SPSS. Tables
1 and 2 present the mean (for 20 subjects) of four parameters
for left and right insole sensor and smartphone, computed on
the basis of mean and SD. The mean and SD for every subject
according to the four parameters were calculated. The average
for every parameter for insole sensors and smartphones was
calculated. According to the findings in Tables 1 and 2, the
mean and SD for smartphone and insole according to four
parameters gave almost the same results. The findings proved
that the smartphone can study the spatiotemporal parameters
for healthy individuals.

To emphasize further analysis of the suggested study in
terms of comparison between the smartphone and insole sen-
sors, 25 trials were also employed in this study to analyze the
relationship between smartphone and insole. The outcome of
each subject relies on four parameters: step time, stride time,
Cadence and walking time, and they are expressed as mean
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± standard and afterwards the average of mean ± standard
was obtained for all subjects, as represented in Table 3. The
outcome of smartphone shows that the current study out-
performed with respect to comparing smartphone and insole
sensors. Among the four parameters, the step time results gave
the best performance in terms of average of mean and SD
across all subject relative to the other parameters. It can be
seen from Table 3 that the smartphone pair gave satisfactory
results relative to that of the insoles. P-value was utilized to
establish significance by reporting the concordance between
the smartphones and insoles. The disparities between the data
obtained from the insole sensor and smartphone weren’t-
significant for all measures (P-value >0.05), indicating the
resemblance between these two devices, as provided in Table
4. Outcomes verify the hypotheses made before this research
and hence are in favor of higher use of smartphones for
gathering spatiotemporal data rather than insole sensors.

Variable Insole Smartphone
Mean SD Mean SD

Step time 0.68 0.03 0.67 0.03
Stride time 1.22 0.06 1.22 0.06
Cadence 50.05 0.92 49.35 1.03

Walking time 1.03 0.05 1.02 0.05

Table 1: The performance of the proposed method based on
four parameters - left insole sensor and smartphone for five
trials m/s

Variable Insole Smartphone
Mean SD Mean SD

Step time 0.68 0.02 0.69 0.03
Stride time 1.21 0.05 1.21 0.05
Cadence 49.81 0.78 49.41 0.96

Walking time 1.01 0.05 1.01 0.05

Table 2: The performance of the proposed method based on
four parameters - right insole sensor and smartphone for five
trials m/s

Parameters
Insole Smartphone
Right Left Right Left

mean ± standard mean ± standard mean ± standard mean ± standard
Step time 0.76 ± 0.03 0.74 ± 0.03 0.78 ± 0.03 0.73 ± 0.03

Stride time 1.30 ± 0.05 1.31 ± 0.05 1.27 ± 0.24 1.31 ± 0.05
Cadence 45.41 ± 1.75 45.78 ± 1.62 45.75 ± 1.60 45.73 ± 1.74

Walking time 0.92 ± 0.09 0.89 ± 0.08 0.90 ± 0.06 0.89 ± 0.07

Table 3: The results for mean ± standard of 25 trials

Variable Right Left
Pearson r P-value Pearson r P-value

Step time 0.79 0.42 0.79 0.26
Stride time 0.92 0.31 0.88 0.08
Cadence 0.80 0.47 0.88 0.08

Walking time 0.82 0.46 0.80 0.94

Table 4: Summary of result agreement between smartphones
and insoles for two subjects with 25 trials

Table 4 shows the summary of results based on the Pearson
correlation coefficient (r) and P-value between the smart-
phones and insole sensors for all subjects with 25 trials. For (r)

values 0.90-1.00 considered very high, 0.70-0.90 high, 0.50-
0.70 moderate, 0.30-0.50 low and less than 0.30 considered
negligible. The P-value was calculated for all parameters
through insole and smartphone (Left and right). The results
in Table 4 show that each parameter of insole and smartphone
could be presented by a specific set of P-value.

A. Performance of the study based on Bland Altman
plots
Bland Altman plots were used to assess this study’s ability
to investigate the effectiveness of the variables (step time,
stride time, cadence, and walking speed). Bland Altman plots
are another way to examine the agreement and systematic
error between the smartphones and insoles [19].The x-axis
represents the average of the two systems’ values while the
y-axis represents the difference between the two values. The
Bland Altman graph has three horizontal lines that provide
more information about the acquired data. The solid line,
called the bias, represents the average differences between the
two values and the two dashed lines represent the limit of
agreement (LOA). Bland Altman plots provide bias and 95%
limits of agreement when comparing the spatiotemporal gait
parameters derived from the smartphones and insole sensors,
as shown in Figure 5. If 95% of the values fall between the
dashed lines, the difference is normally distributed [23]. Based
on the obtained results in Figure 5, we can observe that there
are no big differences in the obtained results when the smart-
phones and insole sensors were used, indicating that there is
an agreement between both devices. From these results, it
is evident that the smartphone has the ability to determine
spatiotemporal gait parameters, and to evaluate the validity
of a smartphone-based tri-axial accelerometer to assess gait
characteristics.

Figure 5: Bland-Altman plot for the Samsung smartphone
attached to subject body and insole sensors for two subjects
with 25 trials. Each dot represents a single step. The solid line
is the bias, with dashed lines representing the upper and lower
of error LOA
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B. Performance of the proposed study based on 25-cross
validation

To investigate the effectiveness of the smartphones as op-
posed to the insole sensors in determining spatiotemporal
gait parameters (step time, stride time, cadence, and walking
speed), box plots were used based on the Pearson correlation
coefficient. The box plots consist of three parts: upper, lower,
and middle Figure 6. The upper part of the plot box denotes the
75th percentile, and the lower part presents the 25th percentile,
while the central part refers to the median 50th percentile
which is sometimes called the centre. The highest and lowest
values in the box plot are marked using a line extending
from the top to the bottom of the box. The box plot shows
agreement between smartphones and insole sensors at the
same time point based on the Pearson correlation coefficient.
In further investigations, the performance of the proposed
method through 25- cross validation using smartphone device
was used in this study. The proposed method was tested 25
times and all the results were recorded. From Figure 6 a
and b we can see that Pearson correlation coefficient ranged
between 0.79 and 0.92 for left and right. In the results in
Figure 6a, the value of the maximum Pearson correlation
coefficient was 0.98% for stride time left, while the minimum
value was 0.68% for walking speed left. On the other hand,
the maximum and minimum Pearson correlation coefficient
for the right limb was 0.98% and 0.65% for stride time and
step time, respectively. For further evaluation of the study,
the behaviours of the smartphones and insole sensors were
analysed and tested for spatiotemporal gait parameters using
R-squared (R2). Figure 7 shows the scatterplot of the insole
sensor (Gse) vs smartphone device (Gsd) with the least square
regression, line, [y (GIsd )= aGIse +b], and correlation of
determination (R2) which is used to evaluate as well as to
show the agreement between smartphones GIsd and insole
sensors GIse for all gait parameters. The constant values of a
and y-intercept b were used outline the model’s performance,
with the correlation of determination (R2), was employed.
Reliable results were found for all four parameters: step time,
stride time, cadence and walking, based on the value a, b
and R2. Furthermore, it was noticed that there is agreement
between the smartphones and insole sensors, which reported
the same or similar results. The results for the left leg were
R2= 0.81%, 0.88%, 0.87% and 0.80% for step time, stride
time, cadence and walking, respectively, while results for the
right leg were R2= 0.85% ,0.96%,0.87% and 0.81% for step
time, stride time, cadence and walking, respectively. Finally,
the experimental outcomes indicate that the proposed method
is capable to study the spatiotemporal parameters of healthy
people: step time, stride time, cadence, and walking speed,
using both insole sensors and smartphones.

Regarding the validation study, [15] proposed the same
method of validation as our study; a smartphone device used to
compare the motion capture systems. In their study, 22 healthy
young adults were assessed with a smartphone application
and a motion capture system. The reliability of the proposed

method was evaluated using the correlation coefficient and
standard error. The validity of the smartphone application
and motion capture-derived values were compared with the
Pearson correlation coefficient and Bland-Altman limits of
agreement. They demonstrated that there was agreement in the
obtained results of the systems. Another study was presented
by [24] in which the reliability and validity of a smartphone-
based accelerometer in quantifying spatiotemporal gait pa-
rameters of stroke patients when attached to the body were
confirmed. In their study, the gait parameters were mea-
sured and evaluated using a smartphone accelerometer and
GAITRite analysis.

Figure 6: Box plot for Pearson correlation coefficient of smart-
phones and insole sensors: A present the left leg and B show
the right leg

Figure 7: shows the scatterplot of the smartphone device (Gsd)
vs Insole sensor (Gse) for the left and right legs

Thirty participants were asked to walk 10 meters. Then
three parameters: gait velocity, cadence, and step length were
computed using smartphone-based accelerometers. The re-
sults were validated with a GAITRite analysis system. Aver-
age excellent reliability (ICC2, 1≥.98) of correlation coeffi-
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cient was reported. They observed that the high correlation
between the smartphone-based gait parameters and GAITRite
analysis system-based gait parameters was achieved.

Following [25], we used step time, stride time, cadence, and
walking speed for a comparison of spatiotemporal gait param-
eters between smartphone and insole sensors. Furthermore,
the Bland-Altman 95% bias and limits of agreement, linear
regression and statistical analysis using mean and standard de-
viation were also employed to evaluate the obtained measures
and to assess the agreement between the two systems. The
comparison between the devices showed excellent agreement.
In summary, from all the obtained results above, we can notice
that specific opportunities exist for smartphone-based gait
assessment as an alternative to conventional gait assessment.
Furthermore, a smartphone-based gait assessment could pro-
vide reliable information about changes in the spatiotemporal
gait parameters.

V. Conclusion
The characteristics of a smartphone application were used to
study the spatiotemporal parameters: step time, stride time,
cadence and walking speed of both insole sensors and smart-
phones for healthy people. In this work, an innovative method
was used to extract the most important features from 20
subjects. One of the most important findings was that the mea-
sures of the smartphone device agree with the insole shoe sen-
sors when measuring spatiotemporal parameters. The effec-
tiveness of the proposed model was tested with two Android
smartphones and 20 healthy adult participants. The study used
different statistical methods (ANOVA, Bland-Altman, linear
regression, and Pearson correlation coefficient) to measure
the reliability and validity of smartphone use. Smartphone
use was also compared with four other existing methods. It
was demonstrated that the developed model achieved the best
performance in terms of a correlation coefficient.

The obtained results showed that, by using two Android
smartphone devices with Insole shoe sensors, a high level
of agreement was obtained, allowing for a good range of
acceptable alternatives to assess spatiotemporal parameters.
Our findings also demonstrated that the smartphone can be
used as a reliable and valid tool in spatiotemporal gait analysis
of healthy adults. This method can help a clinician to work
more efficiently and to objectively evaluate gait with easy to
use and interesting work as well as to reduce cost. In the
future, additional studies will be needed to investigate the
ability of smartphones to detect the differences between adult
and older people in their way of walking and to ascertain
whether it is sensitive enough to detect differences in gait
patterns. Furthermore, we can apply big data and different
devices to study the spatiotemporal parameters of the insole
sensors and smartphones for healthy and non-healthy people.
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