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Abstract In order to avoid blindness in vocal teaching, it is necessary to seek the correct method of vocalization that conforms
to the principles of physiological science and to correct the wrong method of vocalization. In this paper, we describe the
differences of vocal vocalizations by MFCC coefficients and pitch features, and adopt LAS model to extract high-level features
in speech signals. And different vocalizations are explored in different acoustic feature parameter spaces. Deep learning and
transcribed text techniques in artificial intelligence are utilized to detect and correct the errors identified by vocalizations. The
results show that the absolute error of vocal error vocalization correction is between -1.99 and 7.15 Hz, with an accuracy rate
of 97.1729%, and the error is controlled within 3%, which meets the needs of vocal teaching. The identification and correction
method proposed in this paper is feasible and has positive significance for the informational reform of vocal music teaching.

Index Terms mfcc coefficients, pitch features, LAS model, artificial intelligence, vocal
correction

I. Introduction

In the study of vocal music, there is a great blindness in
singing vocal training because there is no correct concept

of voice as a guide, and there is no recognition and mastery
of the basic principles of vocal articulation [1], [2]. Beginners
want to get a better sound effect, so they make their vocal
organs sing in an unnatural state, which will cause some
problems over time [3].

The biggest difference between vocal music and instru-
mental music lies in the fact that the instrument used in
instrumental music is a "thing" outside the body, while the
instrument used in vocal music is a part of our body. The
structure, shape, volume, and proportion of any instrument
are fixed, and the articulation is mechanical, so it is easier
to control [4]–[6]. When there is a problem with a musical
instrument, the broken part can be repaired and replaced with
a new one. As long as there are materials and people who can
repair the instrument, everything can be easily solved [7]. The
articulators in our body are made up of the vocal cords, larynx,
pharynx, mouth, sinuses, lungs, and many other organs [8].
The structure of each organ is very flexible, and the functions
of each organ are very variable and not easy to control; and
when singing, it is necessary to match the functions of these
many organs perfectly, so it is impossible for an untrained
person or a person who has been incorrectly trained to produce
a voice that is accurate in "pitch" and beautiful in sound
quality [9]–[11]. Singing pronunciation is closely related to
breathing, vocalization and resonance, so in order to solve

the wrong pronunciation in singing, it is necessary to solve
the three fundamental problems of breathing, vocalization and
resonance [12], [13].

The scientific method of vocalization can make the move-
ments of each vocal organ coordinated and make them form
a whole movement, which will not only bring beautiful and
melodious singing, but more importantly, it can make the
voice relatively youthful and prolong its artistic life [14], [15].
As for the wrong method of vocalization, due to the improper
cooperation of each vocal organ, the result, not only leads to
the lack of artistic charm of the singing voice, but also long-
term in a kind of abnormal, non-physiological laws of the
local vocal state, may cause hoarseness and other lesions of
the voice [16]. Therefore, a scientific method of vocalization
is very important for those who learn vocal music, especially
those who are new to the field of vocal music [17].

In this study, firstly, the acoustic and rhythmic features
in the traditional voice recognition system are investigated,
and the data preprocessing methods for speech recognition
are summarized, as well as the calculation of MFCC features
and pitch features. Secondly, each feature in the hypothetical
string of recognition results is classified by Artificial Intelli-
gence technique to determine whether it is correct or not. Can-
didate sequences are constructed for the vocalization confu-
sion network labeled as incorrect and the candidate sequences
are scored using the trigram model, and the highest scoring
acoustic feature is selected as the result of error correction.
Finally, the correspondence between voice vocalizations and
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source signals is analyzed to provide a theoretical basis for
acoustic analysis and vocalization error correction, and the
effectiveness of the identification and correction models is
empirically tested.

II. Method

A. Acoustic feature parameter extraction
The expression of the voice depends on two main factors,
the size of the vocal cavity and the way the vocal apparatus
operates.

The features that characterize differences in vocalizations
can generally be considered in the following ways:

1) Acoustic features, the most widely used currently are
MFCC coefficients based on cepstral coefficients.

2) Rhythmic features, i.e., pitch (F0) features describing
vocal vocal differences in a small set range.

In the following, the above two features will be extracted
one by one in this paper to provide a data base for the subse-
quent recognition and correction of erroneous vocalizations.

1) Pitch feature extraction
Strictly speaking, pitch belongs to the auditory perception
of tone, in which a person’s subjective perception is used to
evaluate a heard sound as being high or low in pitch. It can be
measured by asking the listener to compare the alternating pre-
sentation of a complex signal, whose pitch is to be estimated,
with the frequency of a sinusoidal variable signal. In this
paper we use the normalized correlation function coefficients
(NCCF), to characterize the pitch cycle in speech signals.

Calculating the NCCF First, the lag range of the NCCF
needs to be determined. This depends on the frequency range
to be searched, define min lag = 1/max−f0, max lag =
1/min−f0 such that is the minimum and maximum lag time
(s) of the desired NCCF.

And further defined:

upsample filter frequency =
resample frequency

2
. (1)

This is the filter cutoff used when upsampling the NCCF.
Consider frame index t = 0, 1, . . . such that all frame

indexes t generate outputs such that the time span is well
within the time span of the input. Let wt = (wt,0, wt,1, . . .)
be used for the sample sequence of frame t and let Vt,1 denote
the subsequence of wt starting from position i. The NCCF for
frame t and lag index l is:

ϕt,l =
vTt,0vt,l√

∥vt,0∥22 ∥vt,l∥
2
2 + n4nccf − ballast

. (2)

Next, the NCCF is upsampled in a nonlinear manner:

Li = min−lag(1 + delta− picth)i, i ≥ 0, (3)

where Li ≤ max−lag determines the largest index i.
The outputs of this algorithm are the base pitch of each

frame and the NCCF of each frame, with the pitch on frame

Figure 1: MFCC extraction flowchart

t equal to 1/Lst. The value of the NCCF is computed over
a selected lag time. Therefore, we output ϕt,l on frame t.
In order to make pitch extraction more relevant for practical
application purposes, based on previous work, we propose to
compute the NCCF without the nccf-ballast term.

If there exists an NCCF extracted in the region of silence,
the pitch values of neighboring speech regions are inserted
linearly between the gaps. For regions of clear speech at file
boundaries, only the first or last pitch value is needed. The
reason for adding noise and smoothing is to make the output
quantized to discrete values of the base tones produce clear
trajectories that help the pitch extraction to be smoother.

2) MFCC feature extraction
At this stage, most of the vocal recognition systems are still
based on MFCC as the acoustic feature parameter to charac-
terize vocal music, and the acoustic features in this research
work all adopt MFCC as the acoustic feature parameter of
vocal music. The extraction process of MFCC is shown in
Figure 1.

1) Pre-emphasis
Pre-emphasis, using high-pass filtering to process the
speech signal to improve the energy distribution of the
high-frequency portion of the speech signal, and the
signal resolution of the high-frequency component, so
that the spectral distribution of the speech signal as a
whole becomes flat:

H(z) = 1− az−1. (4)

2) Framing and windowing
The generation of speech signals is mainly determined
by the human’s own vocal apparatus, and the process of
speech generation is considered to be slower than the
dynamic change of the sound itself, as the movement
of the vocal apparatus corresponds to the state change.
In order to avoid the leakage of information between
frames, frame splitting is required. Generally, the over-
lap between frames is set to be one-third to one-half of
the frame length. Speech signal sub-frame processing
process shown in Figure 2, directly using a movable plus
window function with the speech signal weighted pro-
cessing to achieve, the specific operation is the window
function and the speech signal multiplication.
The most widely used window function in speech signal
processing is the Hamming window, and the Hamming
window function is expressed as:

ω(n) =

{
0.54 − 0.46 cos[2πn/(N − 1)], 0 ≤ n ≤ (N − 1)

0, n = else
(5)

3) Fast Fourier transform and short-time energy spectrum
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Figure 2: Voice signal framing

The amount of information in the time domain of the
speech signal is difficult to see the information proper-
ties of the speech signal, generally converted from the
time domain to the frequency domain to analyze the
speech signal, the energy distribution of the speech in
the frequency domain reflects the rich information of
the speech signal. So after the speech signal is divided
into frames, each frame of the speech signal also needs
to go through the fast Fourier transform (FFT) to get the
energy distribution in the spectrum. Fourier transform
formula:

X(k) =

N−1∑
j=0

x(j)e−j 2mk
N (0 < k < N). (6)

FFT transform processing of the speech signal is also
required to derive the short-time energy spectrum:

P (k) = |X(k)|2. (7)

4) Mel Filter
After the signal is converted from the time domain to
the frequency domain, it is converted to the frequency
domain that is more in line with the auditory perception
of the human ear from passing through the Mel trian-
gular filter bank. The following formula corresponds to
the delta filter bank division:

Hm(k) =


0, k < f(m− 1)

k−f(m−1)
f(m)−f(m−1) , f(m− 1) ≤ k ≤ f(m)
f(m+1)−k

f(m+1)−f(m) , f(m) ≤ k ≤ f(m+ 1)

0, k > f(m+ 1)
(8)

5) Calculate the logarithmic energy of the output of each
filter bank
The speech signal is essentially a convolutional signal,
and the previous step transforms the speech signal from
the time domain to the frequency domain, at which point
the speech signal is a multiplicative signal. For eas-
ier subsequent processing, the multiplicative signal is
multiplied by the additive signal through a logarithmic
transformation. The logarithmic energy at the output of
the filter bank is:

S(m) = ln

(
N−1∑
k=0

P (k)Hm(k)

)
, 0 ≤ m ≤M. (9)

6) The MFCC is obtained by discrete cosine transform:
The Discrete Cosine Transform (DCT) is more advanta-
geous for dealing with covariance matrices, especially
in speech processing where covariance matrices are

Figure 3: Voice recognition model based on LAS algorithm

generally taken as diagonal matrices. In the previous
step there is a large correlation between the logarithmic
energy outputs from the triangular filter bank, and the
DCT serves to eliminate the correlation between the
different output parameters. In general, the first n coef-
ficients of the DCT indicate most of the characteristics
of the feature parameters, and the MFCC in voiceprint
recognition is generally taken as the input to the model
of order 0-12 or 0-19. The MFCC can be obtained:

c(n) =

N−1∑
n=0

s(m) cos(πn(m− 0.5)/M), 0 ≤ n ≤M. (10)

B. Vocalization recognition model based on LAS
algorithm

The LAS model is based on the Sequence to Sequence
(Seq2seq) framework with the attention mechanism, which
mainly consists of a Listener and a Speller. The former is
a pyramidal RNN encoder that extracts high-level features
from the speech signal, while the latter is an RNN decoder
that utilizes the attention mechanism to convert the high-
level features obtained by the encoder into character output.
The structure of the model is shown in Figure 3, where the
input of the model is the extracted acoustic feature x =
(x1, x2..., xT ) and the output is the character sequence y =
(⟨sos⟩ , y1, ..., yu, ⟨eos⟩).

The model structure of the listener employs a three-layer
pyramidal bi-directional long-short time series model (pBi-
LSTM), and for each time step i, the output of the layer j
Bi-LSTM is:

hji = pBiLSTM
(
hji−1,

[
hj−1
2i , hj−1

2i+1

])
. (11)

This pyramidal model structure reduces the computation
time by a factor of 8 compared to a normal Bi-LSTM. It also
reduces the dimension of speech feature vectors, which facil-
itates the extraction by the attention mechanism and enables
better nonlinear features to be obtained.

The speller of the model, on the other hand, uses an LSTM
Transducer model based on an attention mechanism, where
each output character is subject to a probability distribution
computed based on the results of the characters that have been
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predicted earlier. For an output of yi, its probability distribu-
tion is computed from decoder state si, and context vector ci.
The decoder state si is then a function of the previous decoder
state si−1 and the character predicted in the previous step
yi−1 and the context vector ci−1 of the previous step. Context
vector ci is generated through the attention mechanism:

ci = Attention Context (si, h) . (12)

si = RNN (si−1, yi−1, ci−1) . (13)

p (yi|x, y<i) = Character Distribution (si, ci) . (14)

Subsequently, the scale energy ei,u is transformed by a
softmax function into a probability distribution ai,u, and this
probability, together with the listener’s features hu, will be
used to compute a context vector ci, which is used to select
the input features that are relevant to the output, so that the
model’s attention will be focused on the processing of valid
information. The above steps are computed as follows:

ei,u =< ϕ (si) , ψ (hu) > . (15)

ai,u = exp (ei,u) /
∑
u

exp (ei,u) . (16)

ci =
∑
u

ai,uhu, (17)

where ϕ and ψ are both multilayer vector machine networks,
and ci can be viewed as a continuously weighted vector sum
of encoder hidden vectors h.

For the training of the LAS model, joint training can be used
to maximize the following logarithmic probability function:

max
θ

∑
i

logP (yi|x, ỹ<i; θ) , (18)

where ỹt is obtained by randomly sampling or selecting real
characters from the distribution of characters that have been
predicted, i.e:

ỹi ∼ Character Distribution (si, ci) . (19)

When inference is performed, the most probable sequence
of characters in the input features is found by maximizing the
logarithmic probability:

ŷ = argmax
y

logP (y|x). (20)

The same left-to-right clustering algorithm was used for
decoding. While performing the training the data of the text
is larger than the data of the transcribed speech signal, so
a language model can be trained to re-score the constraints
obtained after the cluster search algorithm.The LAS model
suffers from a small error for shorter acoustic segments, this
error can be eliminated by regularizing the output according
to the length of the characters and the probability obtained by
the language model, i.e.:

s(y|x) = logP (y|x)
|y|c

+ λ logPLM (y), (21)

where λ is the weight of the language model and |y|c is the
restricted length of the output characters, sized by the retained
validation set.

For the encoder component of las, the conformer model
based on the transformer architecture is replaced by the
PBLSTM architecture; For las’s speller component, replace
LSTM with bigr.and replace the focus mechanism with a long
self-focus mechanism while using the tone level CTC decoder
for auxiliary training. The results of the CTC decoder’s weight
affect the experimental results in the data set of the data set,
when the ratio of the wer is low in the near 0.3, and the rate of
the model is getting worse and the rate of the CTC weight
is reduced or increased, and this also shows that the CTC
decoder is suitable for auxiliary training, and the weight value
of the experimental model should be selected by 0.3.

C. Artificial Intelligence Based Correction Method for
Erroneous Vocalization

In this paper, we propose a method for vocalization recogni-
tion results, error detection and error correction. First, each
word in the hypothetical string of recognition results is classi-
fied by artificial intelligence techniques to determine whether
it is correct or not. Next, a candidate sequence is constructed
for the vocalization obfuscation network labeled as incorrect,
the candidate sequence is re-scored using the trigram model,
and the acoustic features with the highest scores are selected
as the results of the error correction, while the acoustic fea-
tures that were originally used as the recognition results are
judged to be incorrect are replaced.

1) False vocalization detection
Vector Support Machine (SVM) is a machine learning system
built on the principle of minimizing structural risk of statistical
learning theory, which has the advantages of small-sample
learning and strong generalization ability of promotion, and
can be well applied to the 2-class pattern recognition problem.
So, in this paper, SVM classifier is used to determine the right
or wrong of each word in the word string as the recognition
result.The model of SVM classifier is:

r = −→p T ·
−→
f + c, (22)

where f⃗ is the normalized feature vector, p⃗ is the projection
vector, and c is the threshold. r is the classification score, when
r > 0 means the word is correct and r < 0 means the word is
wrong.

Based on the acoustic feature confusion network, a set of
candidate features, such as acoustic model scores, language
model scores, and maximum a posteriori probabilities of
words, are first listed. Then, a data-driven approach is used to
refine the set of features for use in the SVM error classifier.
A 10-fold cross-validation experiment is performed for all
candidate features and the dataset is divided into 10 parts, 9
of which are used for training and 1 for testing in turn, with
one candidate feature removed each time. The impact of the
feature on the classification performance is evaluated based
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on the mean of the results of the 10 times and if there is no
improvement in the classifiability then the feature is removed
from the candidate feature sequence. After such a feature
selection process, the following features are finally retained
for use in the classifier:

1) The position of the acoustic feature in the entire se-
quence to be selected.

2) The length of the entire speech signal around.
3) Whether the acoustic feature with maximum a posteriori

probability in the neighboring confusion set is NULL.
4) The maximum a posteriori probability of the acoustic

feature in the current confusion set.
5) The unigram probability of the acoustic feature.
6) The mean and variance of the a posteriori probability of

the acoustic feature in the current confusion set.
7) The number of candidate features in the current confu-

sion set.
8) The score span, i.e., the difference between the maxi-

mum and minimum scores, of all acoustic features in
the current confusion set in the language model.

2) Erroneous vocalization correction
After error detection of the vocalization recognition results, a
sequence of wrong candidates is constructed for the acoustic
features determined to be wrong, forming a search network.
The detailed algorithm is described as follows:

1) Construct a sequence of candidate features, and for
the features labeled as wrong vocalizations, select the
confusion set with temporal overlap with wrong vocal-
izations from the corresponding confusion network, and
replace the wrong vocalizations to form a new search
network.

2) For this new search network, each of the paths in it is a
string hypothesis that constitutes the sentence. For each
candidate feature, the candidate features are classified
using a tool that performs disambiguation on the vocal
corpus on which the acoustic model is trained.

3) Re-score each candidate feature hypothesis using the
trigram acoustic model:

HScore (w1w2 . . . wn) =

m∑
i=2

P (wi|wi−2, wi−1) .

(23)
4) Rank each candidate acoustic feature in order of score.

The candidate feature with the highest score is selected
as the result of incorrect vocalization correction. And
the original vocalizations that were labeled as erroneous
were replaced by the vocalizations at the corresponding
positions in the candidate features.

III. Results and Discussion

A. Analysis of the Effectiveness of Recognition of
Vocalization Errors in Vocal Music
At the beginning of this paper, it was suggested that acoustic
features are divided into two parts: MFCC features and pitch

Figure 4: Fundamental frequency analysis of breathing rhythm

features, pitch is further subdivided into a variety of specific
intonation elements, and rhythm is further subdivided into
different levels of rhythmic units. These rhythmic elements
are closely related to each other, and their cross-talk in the
speech stream forms a vocal rhythmic feature.

1) Acoustic vocalization recognition of respiratory cluster
boundaries
This experiment observes vocal changes at the boundaries of
respiratory clusters, i.e., the syllables at the beginning of each
respiratory cluster and the syllables at the end of each cluster
are cut out and labeled as the beginning group and the end
group, respectively. And by comparing the differences in their
vocal performance, the vocal vocal vocalization changes at
the boundaries of the respiratory clusters were identified. In
addition, because vocal voicing is also affected by different
tonal flatness and oblique patterns, the experiment analyzed
yin and yin flat syllables in order to eliminate the influence
of these flatness and oblique patterns on the experimental
results. The beginning group analyzed was 24 syllables, and
the ending group was 32 syllables, from which the funda-
mental frequency was extracted as a parameter variable, and
the average value of each group was obtained after time
normalization. The fundamental frequency analysis of respi-
ratory rhythm is shown in Figure 4, where the box refers to
the 25% to 75% distribution of the fundamental frequency,
the horizontal line inside the box refers to the mean value,
and the upper and lower lines refer to the maximum and
minimum values, respectively. It can be seen that the average
decrease in fundamental frequency from the beginning to the
end of the respiratory rhythm is 19.29 Hz, reflecting a general
intonation phenomenon such as pitch dip. According to the
basic characteristics of vocal music, the change in vocal music
when the fundamental frequency falls is generally a fall in the
open quotient and a rise in the velocity quotient.

2) Acoustic analysis of vocal vocal characteristics
In this paper, we explore the variation of the open quotient and
velocity quotient based on the vocalization recognition model
of the LAS algorithm. It is mainly reflected in the changes of
spectral slope and high-frequency energy in vocalizations. For
example, the open quotient is closely related to the change of
H1-H2 values, and the velocity quotient reflects the change
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Figure 5: High-frequency energy changes of the voice at the
beginning of the breathing group

of high-frequency energy. Thus, the rise of the open quo-
tient and the fall of the velocity quotient at the boundary of
the respiratory group are acoustically reflected in the fall of
high-frequency energy. This paper further discusses the main
acoustic characteristics of voice changes in breathing rhythm
through acoustic analysis of vocal vocal characteristics.

The high-frequency energy changes of the voice at the
beginning and the end of the respiratory group are shown in
Figures 5 and 6, and it can be seen that there is an obvious
difference between the high-frequency energy at the beginning
and the end of the respiratory group, and the high-frequency
energy at the end of the respiratory group decreases dramat-
ically, with the maximum amount of the change reaching
37.52 dB. The magnitude of the high-frequency energy is also
related to the slope of the spectrum, and the difference in
the energies of the first harmonic and the second harmonic
(H1-H2 values) is the main variable in the slope, which is
the response to the spectral slope of the breath. The energy
difference between the first harmonic and the second harmonic
(H1-H2 value) is the main variable of the slope, which reflects
the change of the high-frequency energy. From the variation
of the H1-H2 value in the figure, it can be seen that the H1-
H2 value at the beginning of the respiratory group is 3.63 dB,
but the value at the end of the respiratory group is 6.29 dB,
which is a large increase at the end of the respiratory group.
This indicates that the slope of the spectrum at the end of the
respiratory cluster is greater, reflecting the decrease in high-
frequency energy.

It can be seen that changes in respiratory rhythm are acous-
tically characterized by a decrease in high-frequency energy,
which is reflected in the spectrum. It should be noted, how-
ever, that the use of spectral analysis in the process of vocal
recognition must be done in the same band to be meaningful;
if the resonance peaks of the analyzed objects have a different
structure, comparisons between these variables will not be
meaningful.

B. Error analysis of vocal mispronunciation correction

A large number of practices have proved that the correction of
vocal mispronunciation through machine learning is subject to
a certain degree of error, and the existence of error is inevitable

Figure 6: High-frequency energy changes of the voice at the
end of the breathing group

and universal. The study of the error that always exists in
the measurement process is the basis for fully understanding
the reduction or elimination of error. Error is the difference
between the measured value and the true value, according to
the reasons for the error and the nature of the error can be
divided into two categories of systematic error and chance
error.

For this experiment, when acquiring vocal acoustic signals,
video images were recorded at the same time for the con-
venience of comparative analysis, and the real data of the
sound acquisition equipment was used as the real value of this
experiment through specific image observation software and
limiting the number of time value digits.

The vocal characteristics of the previous section and the real
data were imported into the model, and the data at ∆t=5min,
10min and 20 min were calculated in the same order, and
the error analysis of vocal mispronunciation correction was
obtained as shown in Table 1. It can be seen that the absolute
error of vocal mispronunciation correction ranges from -1.99
to 7.15 Hz, and the error increases with the increase of vocal
pronunciation time.In the 20-min vocal pronunciation test,
the accuracy of AI-based vocal mispronunciation correction
is 97.1729%, and the error is controlled within 3%, which
is in line with the design requirements. The results of this
experiment verify the feasibility of the method of envelope
extraction of acoustic signals during vocal mispronunciation
based on artificial intelligence technology and the use of
peak time point as a feature parameter for identification and
correction.

IV. Conclusion
In the teaching of vocal music, many students often meet the
phenomenon of wrong vocalization. The reason for this is that
beginners have poor ability to identify the sound and cannot
distinguish between right and wrong sound, which leads to
the formation of wrong vocalization in the long-term practice.
Based on artificial intelligence technology, this paper con-
structs a vocal mispronunciation identification and correction
model, and verifies its effectiveness, which can be applied to
vocal music teaching to improve teaching efficiency.

1) The accuracy rate of vocal mispronunciation correction
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Step size∆t/ ms Acoustic features/ Base frequency Absolute error/Hz Relative error/% Accuracy rate of error correction
Desired value/Hz Actual value/Hz

5 215.37 217.36 -1.99 0.9240 99.076%
10 243.59 249.75 -6.16 2.5288 97.4712%
20 252.91 245.76 7.15 2.8271 97.1729%

Table 1: Vocal music error correcting error of the result

based on artificial intelligence is 97.1729%, and the
error is controlled within 3%, which is in line with the
teaching demand. The method proposed in this paper
realizes computer-assisted vocal vocalization teaching,
detects the identification of errors in students’ voices in
real time, and avoids the complicated labeling work of
teachers.

2) The method of vocal mispronunciation correction based
on artificial intelligence can minimize the appearance
of subjectivity and blindness. A positive and correct
method of vocalization in accordance with scientific
principles is constructed to correct the wrong way of
vocalization and overcome the bad habits on vocaliza-
tion.
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