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Abstract Financial risks are increasing worldwide, thus finding suitable tools for financial risk management becomes
particularly important. In this paper, the realized volatility and implied volatility of financial option data are calculated through
the Black-Scholes option pricing model. Through the support vector machine in machine algorithm, the GARCH model is
improved, the two-stage prediction method of GARCH-SVR model is constructed, and the volatility metric is set to examine
the prediction effect of the model. Finally, a machine learning model is used to predict the implied volatility of CSI 300
ETF options to realize the prediction of volatility. The results show that the return of the arbitrage strategy constructed by
the GARCH-SVR model, the maximum of which is 0.1858. Comparison with the other four models reveals that the machine
learning predicts financial option volatility, which can bring better economic returns in the real market.

Index Terms black-scholes, financial options, implied volatility, machine algorithms,
GARCH-SVR models

I. Introduction

Options are important derivative instruments in financial
engineering. As an institutional trader, the prominent

trading strategy in designing strategies for trading options is
the sell category [1]–[3]. However, one-way selling options
carry significant trading risks as do one-way buying options.
Dynamic hedging is required to capture the gains of robust buy
and sell class option strategies. How to consider the dynamic
continuity and forward-looking nature of hedging becomes
the focus of risk management [4]–[6]. Market volatility is
an important variable in determining option prices, however,
facts and studies have shown that option volatility is not static
and it is stochastic [7]–[9]. The unpredictability of volatility
means that it is difficult to find the right volatility to price
an option. As a result, the forecasting of option volatility
becomes a very important task in order to capture the trend
of option price changes and the dynamics and foresight of
hedging [10-11]. For example, a large portion of the risk in
the strategy of selling options comes from a large increase
in implied volatility, so if we can predict the increase in
implied volatility in advance, we can reduce or avoid the risk
of volatility increase by adjusting the hedging position.

There is an urgent need for new methodologies and models
for volatility forecasting. In recent years, with the increas-
ing maturity of big data, artificial intelligence, and machine
learning technologies, new technologies can be utilized to
achieve the prediction of volatility [12]–[14]. Big data is
a new technology processing mode, with stronger decision-

making power, insight and process optimization capabilities
of the massive, high growth rate and diversified information
assets, T + 0 trading options in the annual, monthly, weekly,
daily, second-degree data at different levels, different depths
of data, to meet the data "big" standard. The "artificial in-
telligence" has been 60 years since its introduction, is a re-
search, development for simulation, extension and expansion
of human intelligence theory, methodology, technology and
application systems of technical sciences, specific research,
including robotics, language recognition, image recognition,
natural language processing and expert systems, etc., the core
of the research is machine learning [15]. Machine learning
design and analysis allows computers to automatically "learn"
algorithms, which is exactly what can be applied to volatility
forecasting in option strategies.

A two-stage superimposed integrated stock market direc-
tion prediction model based on machine learning, empirical
modal decomposition and XAI was proposed in literature
[16]. It is concluded that the prediction model with locally
interpretable model agnostic interpretation support achieves
the highest accuracy of 0.9913 when only the most plausible
predictions are considered on the KOSPI dataset. Literature
[17] enables investors and regulators to expect to predict
future bank failures and other financial variables of interest
by using stable statistical forecasts. The study reports two
successful machine learning methods for predicting bank size
one fiscal year prior to the current date and demonstrates
that these models are successful. Literature [18] uses three
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typical test functions to compare the performance of MLIA
prediction algorithms with logistic prediction algorithms. The
study shows that machine learning has a good predictive effect
on MLIA financial credit risk prediction, which can provide
theoretical references for subsequent related research. Litera-
ture [19] developed an innovative complex network approach
to model interbank networks with systemic risk contagion,
using machine learning techniques to identify comprehensive
features of the network. The results show that the market
factors of interbank networks have a significant impact on risk
diffusion, providing a scientific approach for policy makers to
choose a response to systemic risk. Literature [20] developed
a smart return prediction method for blockchain financial
products using deep learning, including the design of a long
and short-term memory model for return prediction analysis.
The simulation results highlight the advantages of the finan-
cial product smart return prediction methodology technique
over the current state-of-the-art in terms of various evaluation
parameters. Literature [21] compares the forecasting results
of two proposed functionally linked artificial neural networks
based on low computational complexity with traditional intel-
ligent methods. Simulation-based experimental results show
that the predictive performance of the proposed distributed
predictor is similar or improved compared to the traditional
distributed predictor. In addition, the method saves bandwidth,
memory and power consumption. Literature [22] mainly em-
phasizes on accurate prediction of financial markets, where the
main motivation for stock price prediction is to minimize the
significant losses faced by investors and to analyze the prof-
itability through the amount of buying and selling. Simulation
results show that the proposed deep learning based technique
outperforms other models in future prediction irrespective of
the financial market. Literature [23] provides a new financial
trading strategy system that improves the prediction of stock
prices by introducing the optical gradient enhancer algorithm
into stock price prediction and constructing the minimum
variance portfolio of mean-variance model with conditional
value-at-risk constraints. Literature [24] improves the deep
neural network algorithm to predict the price of Bitcoin so
as to achieve the main objective of reducing the financial risk
for e-commerce, which opens up horizons for the development
of e-businesses using digital currencies. The method achieved
good results in terms of accuracy (53.4%) and correctness of
prediction (MSE 1.02), offering prospects for other research
in this field.

In this paper, firstly, using the Black-Scholes option pric-
ing model and market data, historical, realized and implied
volatilities are obtained by backpropagation and input as three
eigenvalues into a machine learning algorithm to be used as
model training. Secondly, the GARCH model is improved
by using the support vector machine in the machine learning
algorithm, and a GARCH-SVR model combining the SVR
model and the GARCH model is proposed to predict the return
volatility of financial options. Finally, the closing price data of
CSI 300 ETF options is selected as the option price history
data. Another decision tree, gradient boosting tree, support

vector machine, and convolutional neural network are selected
to compare the performance and return of option implied
volatility prediction under four models, which are used to
explore the prediction effect of GARCH-SVR model.

II. Modeling of Financial Option Volatility Forecasts

A. Financial Options and Pricing Models

1) Financial options
A financial option is an option that gives the purchaser the
right to buy or sell an asset at a fixed price in a future
period. The initial payment made by the purchaser to the seller
is called the royalty, which is the price of the option, and
consists of two components, the intrinsic value of the option
and the time value. The intrinsic value of a financial option
refers to the profit that the seller makes by selling the option
immediately, while the time value is mainly measured by the
change in volatility of the price of the underlying option over
time. The price at which the asset is purchased or sold is
called, the exercise price of the option.

Options are categorized from the perspective of purchasing
or selling the underlying asset of a financial option, and are
divided into call and put options. A call option will allow the
purchaser to buy the underlying asset in the future, while a put
option will allow the purchaser to sell the underlying asset in
the future, but of course these rights do not have to be executed
at the expiration date. If options are categorized by when
they can be executed, they can be divided into European-style
options and American-style options. European style options
require the purchaser to execute the right only at a specific
point in time in the future, whereas American style options
can be executed at any point in time within a specified period
of time.

2) The Black-Scholes option pricing model
1) Assume that the subject of the contract is tradable.
2) Assume that the underlying contract does not pay divi-

dends or has no storage costs.
3) Assume the underlying contract is shortable.
4) Assume a single constant interest rate.
5) Assume that there are no taxes.
6) Any quantity of the underlying contract can be traded

and the change in the price of the underlying contract is
continuous.

7) There are no fees for trading the underlying contracts.
8) Volatility is constant and volatility is the only parameter

that describes the distribution of returns on the underly-
ing contract. The B-S pricing formula for European call
and put options on non-dividend paying stocks can be
expressed as follows:

C = S0N (d1)−Xe−rtN (d2) (1)

P = Xe−rtN (−d2)− S0N (−d1) , (2)
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where d1 and d2 are respectively:

d1 =
ln

(
S0

K

)
+
(
r + 1

2σ
2
)
t

σ
√
t

(3)

and

d2 = d1 − σ
√
t, (4)

where C and P are the prices of call and put options, respec-
tively, N(x) is the cumulative probability distribution function
of a normally distributed variable, and S0 is the initial stock
price. X is the strike price, r is the risk-free interest rate, σ
is the stock price volatility expressed as an annual standard
deviation, and t is the remaining term to expiration of the
option contract expressed as an annual standard deviation.

The B-S model does not include dividends, which usually
have the effect of lowering the call option price, and can be
extended to account for dividend payouts by using instead S0.
In S0e

−qt, q is the continuous dividend payout output:

C = S0e
−qtN (d1)−Xe−rtN (d2) . (5)

P = Xe−rtN (−d2)− S0e
−qtN (−d1) . (6)

Similarly, it is possible to lay out an equation that would relate
the price of a put option to the price of a call option:

C +Xe−n = P + S. (7)

The relational equation with dividend payout is:

C +Xe−rt = P + S0e
−qt. (8)

The above equation is known as the parity relationship be-
tween the buy and sell options, and deviations from the parity
of the buy and sell options create arbitrage opportunities that
usually disappear quickly.

From the above analysis, it is known that every parameter
used to price an option has an exact known value except for
volatility. Since the value of an option contract is directly
dependent on volatility, accurately estimating volatility is a
critical skill for option traders as well as financial market reg-
ulators. In addition, changes in volatility can be significantly
amplified in the price of an option contract, and a doubling of
volatility can result in a multi-fold increase in the price of an
option.

B. Classification of financial volatility

From the perspective of volatility categorization, this section
introduces several common types of volatility and briefly out-
lines the definitions and calculation methods of different types
of volatility. The comparison of different categories of volatil-
ity helps us to understand the similarities and differences
between different categories of volatility, thus helping us to
deepen our understanding of the concept of volatility, which
in turn facilitates our volatility modeling and forecasting.

1) Historical volatility
Historical volatility is a measure of the volatility of an under-
lying asset over a certain period of time. It is usually expressed
as the standard deviation of historical log returns:

Ri = ln (Pi − Pi−1) , (9)

σ2
t =

1

N − 1

N∑
i=1

(
Ri − R̄

)
, (10)

where Pi is the price on the ind trading day, Ri is the historical
return, N is the observation period given before the tth day,
and R̄ is the average of the historical returns on the N th
day. Historical volatility portrays the volatility of returns over
a certain period of time, but does not take into account the
intraday information of the price series.

2) Realized volatility
Financial high-frequency data obtained at shorter time inter-
vals in accordance with frequency is a hot topic of research
in recent years compared to traditional low-frequency obser-
vations. One of the commonly used metrics is the realized
volatility, i.e:

RVt =

N(∆)∑
i=1

(lnPt,i+1 − lnPt,i)
2
, (11)

where N(∆) is the number of high-frequency trading prices
at a sampling interval of ∆ a day, and Pt,i is the trading
price of the financial asset at the i∆th moment of the tth
day. Under certain conditions, when the sampling interval ∆
tends to 0, RV will converge to the true integral volatility,
which portrays the overall situation of price changes on that
day. Classical time series models need to utilize historical
data when estimating day t volatility, and also require the
assumption that the data is smooth over time. In contrast,
the measure of volatility used in RV utilizes only intraday
high-frequency data for that day and does not require the
assumption that the intraday series data is smooth. In a sense,
RV gives visibility to unobservable volatility. For empirical
analysis, realized volatility is typically calculated using a 5-
minute sampling interval.

3) Implied volatility
Implied volatility is obtained by inverting the Black-Scholes
option pricing formula. Implied volatility reflects market par-
ticipants’ expectations of current market volatility. The higher
the implied volatility, the higher the expected market volatility
increases, and the higher the price of the option, provided
that the other parameters of the option pricing formula remain
unchanged. Conversely, the lower the implied volatility, the
lower the expected market volatility decreases, and the lower
the price of the option.The BS option pricing formula is:

c = StN (d1)−Ke−r(T−t)N (d2) , (12)

where

d1 =
ln
(
St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

,
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and

d2 =
ln
(
St

K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

= d1 − σ
√
T − t,

denotes the option price, St denotes the price of the underlying
asset at t, K is the strike price of the option, T is the time to
expiration, t is the current moment, and r is the risk-free rate
of return. The implied volatility can be calculated by Newton’s
iterative method or interpolation given the option price and
other known parameters.

Since there may be options with different strike prices and
different maturity dates for an underlying asset, the liquidity
of each option is different. As a result, this paper uses the
implied volatility index (VIX) to characterize the volatility of
the two markets.The difference between the VIX index and
the implied volatility model for individual options is that it
does not use the Black-Scholes model. Instead, it is obtained
based on the variance swap, and in this paper, the VIX is used
as a measure of implied volatility, and the specific calculation
steps are as follows:

1) Calculate near-month and next-month volatilities with
an option volatility index rollover of 7 days. Meet the
remaining days to expiration of more than 7 days of
the most recent expiration contract for the near-month
contract, the next closest expiration contract for the
second near-month contract, the two implied volatility
for the near-month and the second near-month volatility,
respectively. Near-month volatility is calculated as:

σ2
1 =

2

T

∑
i

∆Ki

K2
i

eRTP (Ki)−
1

T

[
F

K0
− 1

]2
. (13)

Among them, T represents the remaining expiration
time of the contract, and R represents the risk-free rate
adopted by the SSE. K represents the strike price with
the smallest difference between the call option and put
option price, F represents the price of the theoretical
forward, and F = K + eRT [P c − P p]. P c is the
call option price, P p is the put option price, and K0

represents the option strike price that is less than F and
close to F . Ki represents the strike price sorted from
small to large (i = 1, 2, 3, . . .), and ∆Ki represents the
strike price interval corresponding to the ith strike price,
which is generally (Ki+1 −Ki−1) /2. P (Ki) means
that if Ki is less than K0, then the put option price
corresponding to Ki is taken. If Ki is greater than K0,
take K0 as the call option price corresponding to Ki.
If Ki equals K0, then the average of the call and put
options corresponding to Ki is taken.

2) After completing the calculation of the near-month
volatility σ1 and the next-nearest-month volatility σ2,
the following formula is used to calculate the volatility
index of the option:

iV IX = 100×√√√√{
T1σ2

1

[
NT2 − NT30

NT2 − NT1

]
+ T2σ2

2

[
NT30 − NT1

NT2 − NT1

]}
×

N365

N30

, (14)

where NT1 and NT2 denote the number of days to ex-
piration for near-month and sub-near-month, and NT30

denotes the number of days in a month. If the number
of days to expiration of the near-month contract is not
less than 30 days, the sub-near-month volatility is not
used, and iV IX is the near-month volatility multiplied
by 100.

C. GARCH- SVR Based Volatility Forecasting Models

1) GARCH model
The GARCH model is an improved model based on the
autoregressive conditional heteroskedasticity (ARCH) model,
which embodies asymmetry and facilitates the description of
financial price fluctuations.

The GARCH model is defined as follows:
yt = µt + εt,

εt|It−1 ∼ N
(
0, σ2

t

)
,

σ2
t = α0 +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjσ

2
t−j

= α0 + α(L)ε2t + β(L)σ2
t ,

(15)

Of these, p∼0, q∼0, α0 > 0, αi∼0(i = 1, · · · , q), βj∼0(j =
1, · · · , p).

Since the GARCH model has some limitations and draw-
backs, it needs some improvements.The shortcomings of the
GARCH model are as follows:

1) The model ignores non-negativity conditions in its esti-
mation.

2) Although it accounts for thick-tail effects and volatility
clustering, it does not account for leverage effects.

3) It fails to establish a direct relationship between condi-
tional mean and conditional variance.

4) It does not consider the asymmetry of volatility.
In this paper, through the support vector machine (SVR)

in machine algorithms, the GARCH model is improved even
further, and a stage prediction method combining the SVR al-
gorithm and the GARCH-like model is established to enhance
the prediction accuracy of the original GARCH model, and
the volatility metric is set up to examine the prediction effect
of the model.

2) GARCH- SVR models
The GARCH(1, 1) model provides a simple representation of
the main statistical features of the return series yt of various
assets, and therefore it is widely used to model real financial
time series. If yt follows the GARCH(1, 1) model, then:{

yt = µ+ ut,
σ2
t = ω + αu2

t−1 + βσ2
t−1,

(16)

where ut = σtεt. As defined above, the conditional variance
σt is a stochastic process assumed to be a constant plus a
weighted average of the predicted value σ2

t−1 for one period
and the squared value u2

t−1 of the observations for the pre-
vious period. Parameters ω, α and β must satisfy ω > 0,
α ≥ 0, β ≥ 0 to ensure that the conditional variance is
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positive. In order for process yt not to degenerate, parameter
ω must be strictly positive. When α + β < 1, process yt is
smooth.

Taking advantage of nonlinear regression estimation, the
GARCH model parameters (GARCH- SVR) are estimated by
SVR model instead of ML method. The specific framework is
as follows:

yt = f (yt−1) + ut, (17)

where f is the decision function of the mean equation esti-
mated from SVR. The squared residuals ut are obtained from
the conditional mean estimation of the SVR-GARCH model
and then the conditional variance equation is estimated with
the formula:

σ2
t = g

(
σ2
t−1, u

2
t−1

)
, (18)

where g is the decision function of the conditional variance
equation estimated by SVR.

The GARCH-based SVR method to model the correlation
between information volume and trading volume volatility
uses a regression function of:

σ2
t = f2

(
σ2
t−1, y

2
t−1,W

2
t−1

)
, (19)

where Wt is the amount of online financial information avail-
able on that day.

3) Volatility forecasting steps
In this paper, a GARCH-SVR model combining a two-stage
approach of SVR model and GARCH model is proposed
to predict the return volatility of financial options by using
SVR model instead of ML method to estimate the GARCH
parameters.

For real gain data yt, σ
2
t is unobservable. Therefore, it is

necessary to set σ2
t the value of the metric, and a feasible

metric σ2
t = 1

5

∑4
i=0 y

2
t−i was chosen as the value of the σ2

t

metric for its conduct of the study.
The specific steps are as follows:

1) Estimate the parameters of the GARCH model using the
maximum likelihood method to obtain the conditional
variance series σ̂2

t .
2) Nonlinear regression using SVR method with the fol-

lowing regression function:

Zt = f
(
Zt−1, σ̂

2
t−1, u

2
t−1, σ

2
t−1

)
, (20)

where Zt = σ2
t − σ̂2

t .
3) Combining the linear GARCH model and the nonlinear

SVR model, the predicted values are calculated. Simi-
larly, the conditional variance equation in the GJR-SVR
model with the regression function can be written as:

Zt = f
(
Zt−1, σ̂

2
t−1, u

2
t−1, S

−
t−1u

2
t−1, σ

2
t−1

)
, (21)

where f is the decision function estimated by SVR. If
ut−1 < 0, then S−

t−1 = 1, otherwise S−
t−1 = 0.

Before applying GARCH-SVR to predict financial option
volatility, the kernel parameters, regularization parameters,

Contract code A B C D E . . .
2022-1-3 4.5045 13.0501 7.6201 9.5403 2.3132 . . .
2022-1-4 4.4351 12.9843 7.5808 9.4575 2.2437 . . .
2022-1-5 4.4782 13.0409 7.5814 9.4912 2.2761 . . .
2022-1-6 4.5683 13.0686 7.6642 9.5814 2.3439 . . .
2022-1-7 4.4812 13.0984 7.6585 9.5563 2.4038 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 1: Partial data of the CSI 300ETF and its options

and loss function parameters need to be selected using lattice-
based search and sensitivity analysis. The data is categorized
into three mutually exclusive sets, i.e., training, validation,
and testing. The training set is used to estimate the model
parameters and then the performance of various parameter
values is evaluated in the validation set. Sensitivity analysis
is done in order to assess the impact of parameter variations
on the MAE of volatility prediction in the validation set.
Thus, a grid search will be performed for each parameter and
other parameters will be kept fixed. For each parameter, the
prediction is performed in the validation set and then the MAE
is calculated.

III. Empirical Results and Analysis of Option Volatility
Forecasts

A. Data and Preprocessing

In this paper, the closing price data of CSI 300 ETF options
during the period from January 1, 2022 to December 31, 2023
is selected as the option price history data. The closing price
data of CSI 300 ETF during the same period is selected as the
underlying price history data, and all the data there are from
Flush IFIND.

In order to ensure the validity of the data, this paper
removes the data of options with daily trading volume less
than 10, listing time less than 5 trading days, and remaining
expiration date less than 5 trading days. In addition, this paper
also removes the options data of newly listed non-standard
contracts, as their position and trading volume are small.

Some of the basic information of the obtained data is shown
in Table 1, where the data are the underlying prices of the
financial options in dollars. The start date of the data is the
first trading day of 2022, i.e., 2022-1-3. The end date is the
last business day of 2023, i.e., 2023-12-29.

For the implied volatility of a call option, we consider that
it is influenced by the underlying price of the financial option
S, the remaining maturity T , the risk-free rate r, and the
strike price K. Therefore, we select the above four data as
the eigenvalues.

For a call option contract, the price of the contract must
satisfy the following conditions at any moment:

max
{
0, S −Ke−rt<Call P rice<S

}
. (22)

But there is still a small percentage of deep real, or imagi-
nary call options in the actual market that do not satisfy the
formula. Such call options can be considered as alternative
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Contract code 0/N 1 Week 2 Week 1 Month 3 Month 6 Month 9 Month 1 Year
2022-1-3 2.0149 2.3242 2.3325 2.3959 2.4665 2.5825 2.8418 3.0110
2022-1-4 2.0166 2.3017 2.3394 2.3883 2.4396 2.6097 2.8311 3.0257
2022-1-5 2.0405 2.3017 2.3130 2.4287 2.4395 2.6000 2.8047 3.0994
2022-1-6 2.0129 2.4632 2.3386 2.3569 2.4563 2.5982 2.8230 3.0936
2022-1-7 2.2007 2.3032 2.3649 2.3992 2.4576 2.5696 2.8105 3.0104

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Interbank offered rate

In value state short-term Metaphase Long-term Total Proportion
Depth real value 675 692 205 1572 0.09924

Shallow real value 2314 1553 433 4300 0.27147
Flat value 1750 909 251 2910 0.18371

Shallow virtual value 1819 1231 319 3369 0.21269
Depth virtual value 1903 1587 199 3689 0.23289

Total 8461 5972 1407 15840 1
Proportion 0.53415 0.37702 0.08883 1 -

Table 3: Results of financial options sample classification

options, with higher risk, and are categorized as 0. For other
normal options, they are categorized as 1.

For the selection of the risk-free rate, three kinds of interest
rates are commonly used as the risk-free rate: treasury bond
rate, interbank offered rate, and interbank bond repo rate.
In this paper, we choose to use X interbank offered rate as
the risk-free rate because its corresponding term matches the
maturity term of the option. For the option whose remaining
maturity date does not match the term of the interbank offered
rate, the risk-free interest rate is estimated for the option using
the linear interpolation method, and the basic information of
the resulting interbank offered rate data is shown in Table 2.
The data in the table is the risk-free rate in %. It can be seen
that the 1-year risk-free rate for the first trading week of 2022
has reached over 3%.

B. Analysis of implied volatility of financial options
Next, options are categorized and analyzed as an example
of a call option, first consider the option’s in-value state, let
h = K/ ln(SerT ) be the in-value state of the call option,
where r is the risk-free rate. When h ≤ −0.15, the call option
is a deep real option. When −0.15 <h ≤ −0.05, the call
option is a shallow real option. When −0.05 <h ≤ 0.05,
the call option is a flat option. When 0.05 <h ≤ 0.15, the
call option is a shallow dummy option. When h>0.15, the
call option is a deep-dummy option. In addition to the in-
value state, options can also be categorized according to the
remaining expiration date of the period, let T is the remaining
expiration date of the call option. When T < 60, the call
option is a short-term option. On the 60 < T ≤ 180th day,
the call option is a medium-term option. On the T>180th day,
the call option is a long term option.

The results after obtaining the classification of CSI 300 ETF
financial options are shown in Table 3, from the perspective
of time dimension, the number of short-term and medium-
term options is the most, accounting for 0.53415 and 0.37702,
respectively, while the number of long-term options only
accounts for about 9%. In terms of in-value status, shallow
real, shallow imaginary, and deep imaginary account for more
and more evenly, flat options account for about 18%, and deep
real options are less, only about 10%.

Figure 1: Implied volatility surface of CSI 300ETF options

Then, this paper takes a preliminary view of the implied
volatility surface and obtains the results of the implied volatil-
ity surface of CSI 300 ETF options as shown in Figure 1. It can
be seen that the volatility curve of this call option is relatively
smooth and stable in the range of -10% to 35%. There are
only a few singular values, and the singular values will be
used later as labels for outliers for machine learning. The
volatility surface reflects the volatility smile phenomenon, and
the shorter the term, the more pronounced the phenomenon.
The longer the horizon, the flatter the surface.

C. Model Prediction Results and Analysis

1) Analysis of empirical results on predictability
This paper compares the model of the volatility prediction
model based on garch-svr in financial data analysis. This
subsection presents the out-of-sample prediction accuracy of
different machine learning models under the out-of-sample
R2 metric. Monthly time rolling is used to move the window
during the financial option volatility prediction process for a
total of 24 months (2022.1∼2023.12). Where Mean refers to
the R2 average of the out-of-sample 24 months, and Min and
Max refer to the maximum of each model when predicting
the out-of-sample data R2 in %, respectively. The descriptive
statistics of the out-of-sample R2 results of each machine
learning model are shown in Table 4, which show that the
out-of-sample R2 mean values of decision trees (CART), gra-
dient boosted trees (GBDT), support vector machines (SVR),
convolutional neural networks (CNN), and the GARCH-SVR
proposed in this paper, for the five machine learning models,
are greater than 0, indicating that the five machine learning
models have the effect of prediction. Even the linear regres-
sion model with stochastic gradient descent added has some
prediction effect. Specifically, the GARCH-SVR model has
the best prediction result for financial option volatility, and
its R2 mean value reaches 0.6349%, followed by the SVR
and CNN models, which proves the high efficiency of the
GARCH-SVR model constructed in this paper.

The R2 of the different machine learning models for each
trading day is shown in Figure 2, where it can be seen that
although the SVR model has a higher average R2, the R2

fluctuations for each trading day are higher and less robust. Al-
though the CNN, GBDT, and CART models are less volatile,
none of them R2 are large overall. the overall volatility and R2
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Model Mean Min Confidence interval Max
0.25 0.5 0.75

CART 0.1354 0.0163 0.0198 0.0307 0.1952 0.6326
GBDT 0.1896 0.0204 0.0186 0.0230 0.4255 0.7417
CNN 0.4534 -1.2334 -0.1941 0.0605 0.2941 1.2737
SVR 0.5166 -4.2585 -1.7641 0.0275 1.1641 9.3817

GARCH-SVR 0.6349 -1.1517 0.6581 0.1828 1.6581 4.7986

Table 4: Out of sample R2 Descriptive statistics for each
machine learning model (%)

Figure 2: R2-value results of different machine learning mod-
els for each trading day

mean of the GARCH-SVR model are more desirable, with the
difference between the maximum and minimum values being
3.9726%. It is also worth noting that the GARCH-SVR model
has more consistent peaks and troughs in the volatility pro-
cess, and is basically isotropic in terms of predictive ability.

Overall the GARCH-SVR model does improve the out-
of-sample prediction results of the model, even compared
to stochastic gradient descent linear regression, proving the
superiority of this machine learning method in capturing the
complex interactions between the predictor variables, and
verifying its validity in the prediction of the financial options
market.

2) Investment Performance Analysis under Machine Learning
Predictions
This subsection results in the construction of a simple financial
options investment strategy based on the five machine learning
forecasts above. A financial options portfolio for each month
is constructed by sorting the stock return forecasts for the
following month obtained from the monthly rolling forecast-
ing model from high to low. The test sample interval is from
January 2022, to December 2023. At the same time, in order to
simulate the investment requirements of risk diversification in
the real market, each model constructs a portfolio by screening
the top twenty financial options in terms of yield based on the
rolling monthly forecasts. In this paper, the slippage point is
set to 0.0025, which means that when a buy order is placed,
the price of the transaction is equal to the average price at that
moment plus half of the spread. The spread in this paper is
0.0025 of the price at that moment, the same when selling.

The cumulative returns of the different machine learning
out-of-sample asset portfolios are shown in Figure 3, and
the benchmark return curve is the return of the Shanghai
Composite Index during the out-of-sample test period used to
complete the comparison study. It can be seen that the dif-

Figure 3: Cumulative returns of different machine learning
portfolios

Index CART GBDT CNN SVR GARCH-SVR
Accumulated income 22.15% 4.31% 32.08% 41.29% 46.33%

Annual income 4.51% 0.97% 8.35% 6.23% 9.06%
Excess income 5.91% -5.37% 23.15% 15.41% 27.34%

Sharpe ratio 0.0038 0.056 0.1418 0.2204 0.3208
Winning percentage 0.4680 0.4705 0.4756 0.5047 0.5251

Maximum retest 32.45% 34.31% 32.86% 34.07% 28.39%
Volatility 0.1848 0.1952 0.1736 0.1715 0.1608

Profit and loss ratio 0.1233 0.1015 1.2507 1.3721 1.5238

Table 5: Details of portfolio strategies for different machine
learning

ferent models have some synergy in the trend of constructing
the portfolio strategy, and in general with the general market
trend of the options market is almost the same. If we only look
at the portfolio returns out of sample, the portfolio strategy
constructed based on the GARCH-SVR model has the largest
cumulative return, with a maximum of 18.58%. It is worth
noting that the cumulative returns of the portfolio strategies
constructed based on the CART and GBDT models are low,
even lower than the benchmark returns, which may be related
to the importance analysis of the characteristics above.

In order to better measure the risk and further compare
the predictive ability of each model, this paper will use
the evaluation metrics of trading strategies such as strategy
cumulative return, strategy annualized return, excess return,
Sharpe ratio, win rate, maximum retracement, volatility, and
profit/loss ratio. The details of each indicator under different
machine learning models are shown in Table 5. In terms of
the traditional Sharpe ratio, the portfolio strategy constructed
based on the GARCH-SVR model is the highest at 0.3208,
followed by the SVR (0.2204) model and the CNN (0.1418)
model. In terms of win rate, the portfolio strategy constructed
based on the GARCH-SVR model has a win rate of 0.5251,
which is significantly higher than the other four models. In
terms of maximum retracement and volatility, the portfolio
strategies constructed based on the GARCH-SVR model are
both optimal, presenting small retracement and high return
among the five models. The portfolio strategies constructed
based on other machine learning models, on the other hand,
are characterized by high volatility and low returns.

In summary, compared with several other machine learning
algorithms, the GARCH-SVR model constructed in this pa-
per is more advantageous for volatility prediction in China’s
financial options market, which has economic and investment
significance.
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IV. Conclusion
As an important attribute of financial derivatives, financial
volatility can be effectively used in the pricing of finan-
cial derivatives, allocation of financial assets and risk man-
agement. This paper integrates multi-source data, constructs
a financial option volatility prediction model based on the
GARCH-SVR algorithm, and verifies its effectiveness through
empirical analysis. The basic conclusions are as follows:

1) Machine learning is effective in predicting financial
option volatility scenarios. The garter SVR model has
the best prediction of the volatility of financial options,
and its R2 average is 0.6349%. For the factor set of in-
puts constructed in this paper, the GARCH-SVR model
achieves an efficient return of 0.3208 and a win rate of
0.5251 for the portfolio strategy. Based on the income
of the portfolio, the cumulative yield of the portfolio
strategy built based on the garter SVR model is the
largest, maximum to 18.58%.

2) Machine learning that integrates information from mul-
tiple sources of data has advantages in the field of pre-
diction, and the machine learning GARCH-SVR model
constructed in this paper also provides a new manage-
ment tool for the financial sector, which broadens the
application of machine learning theory in the field of
financial risk management.

Finally, the shortcoming of this paper is that the grid search
method is used in the setting of hyperparameters for machine
learning. Further the method of manual parameter tuning can
be used in order to optimize the model and improve the
effectiveness of the machine learning algorithm model.
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