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Abstract The high volatility and low stability of the international crude oil market make it extremely challenging to analyze
and predict oil prices, but the economic returns translated from the transformation of research results are extremely lucrative and
attractive to institutional investors. In this paper, we first optimize the traditional logistic regression algorithm for the row and
column dimensions of the dataset, so that its convergence speed and gradient decrease, and then introduce Lasso regularization
to do further dimensionality reduction. The improved logistic regression algorithm is then used as the basis for constructing
an international oil price prediction model, and the prediction performance of the constructed model is compared with that
of other five logistic regression models on the dataset, and at the same time, the prediction of international crude oil price is
carried out for two kinds of contingencies, namely, natural disasters, and over-expectation of important data. It is found that
the AUC of the model in this paper is 0.034 higher than that of the traditional logistic regression model, and the probability
that the international crude oil price will keep fluctuating between $0 and $4 in the next 24 hours is the highest when natural
disasters occur, with an average probability of 0.58666, while the international crude oil price will keep fluctuating between
$4 and $10 in the next 24 hours when the economic data, monetary data, crude oil production and sales, and stockpiles do not
meet the expectations in the best way. Maintain the greatest probability of fluctuation between 4 and 10 dollars, with an average
probability of 0.55345.This study provides a new basis for trading decision-making for professional institutional investors and
algorithmic trading practitioners, which helps to improve the level of trading decision-making.

Index Terms quantitative trading, logistic, gradient descent, international crude oil

I. Introduction

C rude oil is a vital bulk energy product, often described
as the lifeblood of modern industry. As an essential

industrial raw material, it possesses commodity attributes in
the general sense [1-2]. In recent years, due to the elevated
status and share of crude oil futures in the international
commodity market, coupled with the scarcity of oil resources,
crude oil has become the focal point of national and regional
interests, with its financial and political attributes becoming
increasingly prominent [3-4]. However, changes in crude oil
prices are often unpredictable. After the 2008 financial cri-
sis, international oil prices experienced frequent and volatile
fluctuations. In 2020, the global epidemic outbreak led to a
decline in oil demand, which further resulted in a plunge of oil
prices, with WTI crude oil futures dropping to a low of -37.6
dollars, triggering panic in the global market [5]. Evidently,
crude oil prices are influenced not only by supply and demand
but also by geopolitics, emergencies, and other unquantifiable
factors, making forecasting work complex but strategically
important [6]. For countries, reliable prediction of crude oil
prices can grasp national economic development trends, while

for industries, it can ensure stable development across var-
ious sectors. Therefore, the analysis and prediction of the
international crude oil market has become a core concern
for relevant departments in China. Government departments,
enterprises, and investment institutions are eager to make
accurate predictions of international crude oil price trends to
facilitate scientific policy-making, production investment, and
purchase and sale transactions, while also mitigating risks to
the greatest extent possible [7-8].

As the largest developing country globally, China’s econ-
omy has been on an upward trend, resulting in an increased de-
mand for crude oil and its ancillary products across various in-
dustries. Furthermore, the fluctuations in crude oil prices have
a significant impact on global economic development. Con-
sequently, analyzing and forecasting the international crude
oil market and crude oil prices becomes crucial. Literature [9]
proposed a prediction framework for crude oil prices using a
transfer learning approach with long and short-term memory
networks as the core logic. This framework demonstrated
good generalization ability and prediction accuracy in simu-
lation tests and practical applications. Based on the heteroge-
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neous autoregressive (HAR) analytical framework, literature
[10] conducted out-of-sample forecasting for heating oil spot
and futures prices using monthly realized variances. The study
highlighted that both El Niño and La Niña events significantly
influence the values of realized variances. Literature [11]
combined six real oil price forecasting systems mentioned in
the Journal of Business and Economic Statistics with a futures
model. The empirical analysis revealed that the proposed
forecasting scheme effectively enhances the accuracy of oil
price forecasts. Literature [12] introduced the loss function
method into the research framework of oil price prediction
and proposed an oil price prediction model based on the em-
pirical genetic algorithm (GPEGA). Compared to the GPGA
prediction model, the GPEGA-based model showed improved
prediction accuracy and stability. Literature [13] conducted
a comparative test to analyze the performance difference
between multi-model and single-model approaches in crude
oil price prediction. The analysis results indicated that the
multi-model crude oil price prediction framework outperforms
the single-model approach in terms of comprehensive perfor-
mance. Literature [14] explored the predictive performance
of crude oil price volatility predictors based on the model
confidence set (MCS) and found that financial predictors are
the most significant factors affecting oil prices. This provides
valuable insights and references for managers in the crude oil
market. Literature [15] employed multivariate heterogeneous
autoregression to establish a volatility analysis framework
to investigate how information and correlation between oil
futures and the U.S. financial market affect oil price volatility.
The study validated the excellent predictive performance of
the HAR framework and emphasized the impact of stock
market volatility information on oil prices. Literature [16]
discussed the differences in time series information between
analysts’ assessments of natural gas and oil reserves and
highlighted that the level of analysts’ analysis significantly
influences the volatility of natural gas and oil prices.

In this paper, we first derive the generalized linear model
for logistic regression and obtain the objective function us-
ing the maximum likelihood method. Subsequently, the ba-
sic framework of the improved logistic regression model is
constructed. Optimization is carried out by comparing the
convergence speeds of different improved algorithms with
conventional algorithms, considering both row and column
dimensions of the dataset. Thereafter, the proximal gradient
descent method for solving Lasso is introduced. Using the
improved model, we construct a logistic-based international
oil price prediction model. This model, along with five other
logistic regression models, is trained using the dataset. We
then compare their performance in predicting international
crude oil prices, specifically focusing on the prediction of
international crude oil prices under unexpected events such as
natural disasters and important data exceeding expectations.

II. Logistic-Based International Oil Price Forecasting
Models

A. Logistic model and derivation of objective function

1) Generalized linear models and logistic
Logistic models are statistically based learning models have
a good statistical basis and interpretability. It is derived from
exponential family. Definition of exponential family:

p(y; η) = b(y) exp
(
ηTT (y)− a(η)

)
, (1)

where η is a characteristic parameter of the distribution, T (y)
is a sufficient statistic for the distribution under consideration,
and in general T (y) = y, a(η) is known as the log partition
function usually e−a(η) plays an important role in normalizing
the parameters, which ensures that the integral or sum of the
distribution p(y; η) with respect to y is equal to one.

For selected T, a and b two functions determine the kind of
family the distribution belongs to. Consider first the Bernoulli
distribution.

The Bernoulli distribution is often also called the binomial
distribution, and the Bernoulli distribution with mean ϕ is
written B(ϕ), and from Bernoulli’s distribution we know that
y ∈ {0, 1}, and therefore p(y = 1;ϕ) = ϕ. p(y = 0;ϕ) =
1−ϕ, and when ϕ is changed a different Bernoulli distribution
is obtained, such that: T (y) = y,

a(η) = − log(1− ϕ) = log (1 + eη),
b(y) = 1.

(2)

Is obtained by bringing in Eq. (1):

p(y;ϕ) = exp
(
log
(

ϕ
1−ϕ

)
y + log(1− ϕ)

)
= exp(y log ϕ+ (1− y) log(1− ϕ))
= ϕy(1− ϕ)1−y.

(3)

A comparison reveals that Eq. (3) is exactly Bernoulli’s
distribution formula, and therefore the Bernoulli distribution
belongs to the exponential family.

The following is a discussion of the Gaussian distribution,
which is also called the normal distribution and is usually
denoted as N

(
µ, σ2

)
, where µ is called the expected value

of the distribution and σ2 is called the variance, and together
they both determine the shape of the normal distribution. Let:

µ = η,
T (y) = y,
a(η) = µ2/2 = η2/2,

b(y) = (1/
√
2π) exp

(
−y2/2

)
.

(4)

It’s available,

p(y;µ) = 1√
2π

exp
(
− 1

2y
2
)
exp

(
µy − 1

2µ
2
)

= 1√
2π

(
− 1

2 (y − µ)2
)
.

(5)

Eq. (5) is precisely the distribution function of the Gaussian
distribution, and thus the Gaussian distribution also belongs
to the exponential family.

Typically, problems of exponential families can be solved
by constructing a generalized linear model, and the following
assumptions about the conditional probability p(y|x; θ) of y
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are given for how to construct a generalized linear model,
given sample x and parameter θ:

(a) y|x; θ belongs to the exponential family.
(b) For a given x, the objective is to predict the expectation

of T (y) i.e. h(x) = E[y|x] here T (y) = y.
(c) η = θTx, i.e., η and x are linearly related.

With the assumptions as above, the general linear regression
and Logistic can be constructed, in the general linear regres-
sion it is assumed that given the sample x and parameter θ, the
conditional probability about y obeys a Gaussian distribution
i.e., y|x; θ ∼ N

(
µ, σ2

)
, and the first assumption is satisfied

by the previous relationship between the Gaussian distribution
and the exponential family. According to assumptions (b) and
(c) and the nature of the Gaussian distribution can be obtained
as,

hθ(x) = E[y|x] = µ = η = θTx. (6)

While in Logistic, it is assumed that the conditional probabil-
ity of y given sample x and parameter θ obeys the Bernoulli
distribution i.e. y|x; θ ∼ B(ϕ), from the previous relationship
between the Bernoulli distribution and the exponential family
it can be seen that the first assumption is fulfilled, in accor-
dance with the assumptions (b) and (c) as well as the nature of
the Bernoulli distribution can be obtained by,

hθ(x) = E[y|x] = ϕ = 1/
(
1 + e−η

)
= 1/

(
1 + e−θT x

)
.

(7)
So far, Eq. (6) has been obtained using Gaussian distribution
with generalized linear model and Eq. (7) has been obtained
using Bernoulli distribution with generalized linear model
both of them have a high degree of formal similarity, these two
models are the general linear model and the Logistic model,
where Eq. (7) is also known as the predictive function of
Logistic.

2) Use of logistic prediction functions
The regression problem is a curve fitting process where a set
of curve parameters are computed to make the sample data
fit as well as possible on the desired curve. In practice, the
curves are not chosen randomly and aimlessly, but the form
of the curves, such as straight lines, quadratic curves, etc.,
is usually assumed first, and then the parameters are learned
through computation.

There are two problems in the parameter learning process
one is whether the initial assumptions reflect the characteris-
tics of the problem, if you choose to use a straight line to fit
a non-linear problem, there will be a major error. The other is
whether the curve fit is good or not, if the parameters sought
are not ideal, there will be underfitting or overfitting and the
results obtained will not be satisfactory.

Assuming that the regression can be performed using a
linear model, the linear form of the general linear regression
in the plane is obtained according to Eq. (6):

y = θ0 + θ1x1 + θ2x2 + θ3x3 + . . .+ θnxn, (8)

where xi denotes the input component of the model, i.e., the
specific value in the sample, and θi is the learning parameter.

However, there are following drawbacks of using this model
in reality.

Many types of inputs to the model exist, such as continu-
ous values, discrete values, and enumerated values. And the
range of values of the inputs varies greatly. For example, the
range of outdoor temperature [-50,50], the range of a certain
probability [0,1], and so on. Inputs with large ranges tend
to make the role of inputs with small ranges negligible in
the calculation process. Moreover, linear regression remains
a fitting problem, whereas in practice classification problems
have a more important value. So consider a modification of
Eq. (8) to get Eq. (6) and Eq. (7) in the previous section and
compare their relevance to get:

σ(y) = 1/(1 + exp(−y)). (9)

Eq. (9) is often referred to as the Sigmod function, which was
initially used to study population growth models where the
function resembles an "S" shape, with initial growth approxi-
mating an exponential function and later growth slowing down
and eventually approaching a plateau.

3) Derivation of logistic objective function

With the prediction function, the next question is how to
calculate the learning, whether the model is applied to curve
fitting or applied to classification, the first problem faced
is to determine the objective function, also known as the
loss function. The role of the loss function is to evaluate
the model, commonly used loss functions include, 0-1 loss
function, squared loss function, absolute value loss function,
logarithmic loss function several.

Logistic usually uses a logarithmic loss function, due to the
fact that when logistic is applied to a classification problem,
the output value 1 is discrete and binary, with only 0 or y,
which corresponds to the binomial distribution, which is most
intuitive using a logarithmic loss function. Give the procedure
for deriving the objective function of Logistic.

Suppose there is m independent sample
{(

x1, y1
) (

x2, y2
)(

x3, y3
)
, . . . , (xm, ym), y

}
= {0, 1}, then the probability

that each sample occurs is:

p
(
xi, yi

)
= p

(
yi = 1|xi

)yi (
1− p

(
yi = 1|xi

))1−yi

. (10)

When y = 1 the latter term is equal to 1 and when y = 0 the
preceding term is equal to 1. Considering that each sample is
independent so the probability of occurrence of the m samples
can be expressed as their product, i.e.:

L(θ) =

m∏
i=1

p
(
yi = 1|xi

)yi (
1− p

(
yi = 1|xi

))1−yi

. (11)

This function is known as the Logistic’s release function
and can be used as a loss function, but it is computationally
complex, and in practice it is simplified by using a logarithmic
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Figure 1: Improves the logical regression model structure
diagram

function to obtain it since it requires the use of logarithmic
losses:

J(θ)=log(L(θ))

= log

(
m∏
i=1

p
(
yi = 1|xi

)yi (
1− p

(
yi = 1|xi

))1−yi

)

=

n∑
i=1

(
yi log p

(
yi = 1|xi

)
+
(
1− yi

)
× log

(
1− p

(
yi = 1|xi

)))
=

n∑
i=1

(
yi log hθ

(
xi
)
+
(
1− yi

)
log
(
1− hθ

(
xi
)))

.

(12)

This is the final form of the loss function, the objective func-
tion used in the computation, for which the main computation
in Logistic is to solve for the minimum, which can only be
approximated using an iterative algorithm since there is no
analytic solution.

B. Construction of improved logistic regression models

1) Improved logistic regression modeling framework
Based on logistic regression, this paper proposes an improved
logistic regression algorithm. Figure 1 illustrates the structure
of the improved logistic regression algorithm. As can be seen
from the figure, the main entry points for constructing the
improved logistic regression model are data dimensionality
reduction comparative analysis and gradient descent compar-
ative analysis.

For the optimization of the logistic regression model, we
primarily focus on optimizing from the row and column di-
mensions of the dataset. In selecting the methods, we employ
a combination of stochastic projection and stochastic gradi-
ent descent to achieve optimization. However, the features
resulting from stochastic projection dimensionality reduction
still have room for further optimization, as there are a small
number of redundant variables. Therefore, we add Lasso on
the basis of stochastic gradient descent for further feature
screening, aiming to improve the accuracy of the model.

Traditional dimensionality reduction methods, such as PCA
and SVD, can indeed realize data dimensionality reduction.

However, their disadvantage lies in the fact that the dimen-
sionality reduction process itself requires a significant amount
of computational time and resources, which is almost equiv-
alent to the computing cost incurred before dimensionality
reduction. Additionally, in the process of updating model pa-
rameters, ordinary gradient descent exhibits slow convergence
when dealing with large sample sets, resulting in high com-
putational demands, time complexity, and space complexity.
This makes such methods less suitable for large-scale datasets.
Therefore, this paper primarily focuses on investigating the
impact of data dimensionality reduction and gradient descent
on the classification effectiveness of machine learning.

2) Optimization and improvement of convergence speed
In common optimization algorithms, we usually use gradient
descent including batch gradient descent and stochastic gradi-
ent descent.

In terms of training speed, stochastic gradient descent it-
erates with only one sample at a time, resulting in a very
fast training speed. On the contrary, batch gradient descent
is significantly slower when dealing with a large sample
size. However, in terms of accuracy, stochastic gradient de-
scent uses only one sample to determine the direction of
the gradient, leading to a parameter solution that may not
be optimal. Nevertheless, it can still achieve good accuracy
results. Additionally, from the perspective of utilizing sample
information effectively, stochastic gradient descent and non-
stochastic algorithms can be more efficient, especially when
the information is redundant. Stochastic gradient descent se-
lects one sample for updating each time, and it is possible to
achieve convergence by using all the samples, thereby making
full use of the effective information contained in the sample.

In terms of convergence of the algorithm, the batch gradient
descent converges linearly in the strongly convex case, and in
the worst case, it needs to converge at least O

(
log
(
1
ε

))
time

to achieve the accuracy of Eq. (13):∥∥∥∥∥
n∑

i=1

fi (xt)− f∗

∥∥∥∥∥ ≤ ε. (13)

Since batch gradient descent needs to compute n sample at
a time, the total computational complexity of batch gradient
descent is O

(
log
(
1
ε

))∗
O
(
log
(
1
ε

))
.

For stochastic gradient descent, to achieve the accuracy of
Eq. (14):

E

[∥∥∥∥∥
n∑

i=1

fi (xt)− f∗

∥∥∥∥∥
]
≤ ε. (14)

3) Gradient descent improvement with the addition of lasso
In the classification model of this paper, the logistic regression
model is solved using stochastic gradient descent to solve the
logistic regression, and in the process of partial derivation of
the loss function, the stochastic gradient descent of logistic
regression can be obtained in the form of:

θj+1 = θj − α
(
hθ

(
xi
)
− yi

)
xi. (15)
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Proximal gradient descent is an important method for solv-
ing nonsmooth problems and one of the solution methods for
solving Lasso’s problem, consider such a function problem:

min
x∈Rd

f(x) = g(x) + h(x), (16)

where g(x) and h(x) are both convex functions, but g(x) is
smooth and h(x) is non-smooth. The most typical example of
this type of problem is the least squares method based on the
L1 paradigm, with the problem being:

min
x∈Rd

1

2
∥Ax− b∥2 + λ ∥x∥1 . (17)

The proximal gradient method requires the computation of
neighboring operators at each iteration, see Eq. (18):

y = argmin
x∈Rd

L

2
∥x− y∥2 + h(x), (18)

where L is the Lipschitz constant for a g-gradient, i.e., there
exists a constant L > 0 such that:

∥g′(x)− g′(x)∥ ≤ L ∥x′ − x∥ . (19)

This is a standard assumption for differentiable optimization,
and if g is second-order differentiable, we base our Taylor
expansion around x:

g(y) ≃ g(x) + ⟨g′(x), y − x⟩+ µ

2
∥y − x∥2 . (20)

Rearranging the above equations gives:

g(y) ≃ L

2

∥∥∥∥x−
(
xk − 1

L
∇g (xk)

)∥∥∥∥2
2

+ φ(xk), (21)

where φ (xk) is a constant that can be neglected. It follows
from equation (21) that the minimum value of g(x) is obtained
in equation (22):

xk+1 = xk − 1

L
∇g (xk) . (22)

When the non-smooth penalty term L1 is added, the minimax
idea above is analogized to the case where the penalty term is
added:

xk+1 = argmin
x∈Rd

L

2

∥∥∥∥x−
(
xk − 1

L
∇g (xk)

)∥∥∥∥2
2

+ λ ∥x∥1 .

(23)
Proximal gradient descent to solve Lasso’s problem can be
understood as one can first compute Eq. (22), treating xk+1 as
z, and then solve Eq. (24):

argmin
x∈Rd

L

2
∥x− z∥22 + λ ∥x∥1 . (24)

To achieve a screening variable. In a theoretical sense, soft
thresholding generally solves the following problem:

argmin
x∈Rd

∥X −B∥22 + λ ∥X∥1 . (25)

From a paradigm point of view, we can split this equation into:

F (X) = ∥X −B∥22 + λ ∥X∥1. (26)

After splitting Eq. can be transformed into solving a small
problem and there is no interaction between different x’s, see
Eq. (27):

f(x) = (x− b)2 + λ|x|. (27)

The derivative of the function can be obtained:

df(x)

dx
= 2(x− b) + λsgn(x), (28)

where sgn(x) is the sign function and we assume that the
partial derivative is zero.

x = b− λ

2
sgn(x). (29)

For b, there exist three different cases of solutions, and the
minimum value of the function takes values in this state, see
equation (30):

argmin f(x) =

 b+ λ/2, b < −λ/2,
0, |b| ≤ λ/2,
b− λ/2, b > λ/2.

(30)

We can see that f(x) and F (x) are only different for variable
b and independent variable x. The function expressions are
still approximately the same, so F (x) can also be expressed
in terms of the above solution. Its closed-form solution can be
found as Eq. (31):

xi
k+1 =


zi − λ

L ,
λ
L < zi,

0,
∣∣zi∣∣ ≤ λ

L ,

zi + λ
L ,

λ
L > zi,

(31)

Where xk+1
i and zi are the ith each component of xk+1 and

z respectively. So from the above we can get that by proximal
gradient descent we can minimize the Lasso and other Lasso
based paradigms to reach the solution quickly.

The Lasso-logistic regression model is solved by a com-
bination of stochastic gradient descent and proximal gradient
descent methods. In this case, the problem to be solved by
proximal gradient descent is Eq. (32):

min
x∈Rd

f(x) = g(x) + h(x), (32)

where g(x) is a smooth convex function and h(x) is a rel-
atively simple convex function, but not trivial. In machine
learning, we also often encounter optimization problems of
this form, given a column of data (a1, b1), . . . , (an, bn), hy-
pothetically:

gi(x) = log
(
1 + exp

(
−bix

Tai
))

, h(x) = λ ∥x∥1 . (33)

This is a logistic regression optimization problem with the
addition of a regular term, and in order to solve this problem,
our conventional approach is to use proximal gradient descent,
which can be described as Eq. (34):

xk+1 = proxηkh (xk − ηk∇g (xk)) , (34)
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where prox is the approximation operator, and the solution of
the approximation operator generally needs to be transformed
into Eq. (35):

proxηh(y) = argmin
x∈Ra

{
1

2
∥x− y∥2 + η ∥x∥1

}
. (35)

The stochastic transformation of proximal gradient descent
is stochastic proximal gradient descent (SPGD), in which at
each iteration k = 1, 2, . . ., we randomly select ik from
{1, 2, . . . , n} to update the parameters in the form of Eq. (36):

xk+1 = proxηkh (xk − ηk∇gik (xk)) . (36)

Stochastic proximal gradient descent has the same structure
as proximal gradient descent, but the advantage over proximal
gradient descent is that at each iteration, stochastic forced
gradient descent only needs to compute a single gradient
∇gik (xk), in contrast to proximal gradient descent, which
uses all of the samples N each time, and thus the computa-
tional cost of stochastic proximal gradient descent is 1/N of
the cost of proximal gradient descent.

III. Model Validation and Case Studies

A. Comparison of logistic model predictions

This paper focuses on analyzing the data of Brent crude oil
from May to June 2024.80% of the crude oil price data is used
as a training set and the rest of the data is used as a test set
to predict the upward and downward trend of Brent oil price.
The opening price, high price, low price, closing price, and
volume of Brent crude oil from May to June were obtained
through Wind Financial Terminal.

It is generally accepted that long-term forecasting models
should incorporate fundamental indicators, while short-term
forecasting models, such as daily forecasting models, should
primarily focus on technical indicators due to the lagging na-
ture of fundamental data. This paper focuses on predicting the
short-term upward and downward trends of crude oil prices.
We selected 19 technical indicators as predictor variables and
the rise and fall of the closing price as response variables.
Five logistic regression models, namely traditional logistic
regression, Ridge, Lasso, Elastic Net, and MCP, are utilized
for comparison with the model proposed in this paper to
predict the upward and downward trends of crude oil prices.
The 19 indicators are WMA, DEMA, ADX, MACD, CCI, Mo,
RSI, ATR, CLV, CMF, CMO, EMV, MFI, ROC, VHF, SAR,
TRIX, WPR, and SNR.

In the following section, we utilize the test set and ROC
surface analysis method to compare the prediction accuracy of
the five logistic regression models with the model proposed in
this paper. To visualize the comparison between the prediction
results of these five models and the prediction results of the
improved logistic regression model presented in this paper, we
tabulate the prediction results of the logistic regression model
with the technical indicators. Table 1 displays the prediction
classes based on the prediction classes obtained from the

training set and the actual classes provided by the test set,
allowing us to establish a two-class confusion matrix.

The traditional logistic regression model predicts that the
crude oil price will rise a total of 298 times, with actual rises
occurring 202 times and actual falls occurring 96 times. It
predicts that the international oil price will fall 248 times, with
actual falls occurring 186 times and actual rises occurring 62
times. In contrast, the improved logistic regression algorithm
proposed in this paper predicts a rise a total of 303 times, with
actual rises occurring up to 227 times and prediction errors oc-
curring 76 times. It predicts a fall 258 times, with correct pre-
dictions occurring 199 times and prediction errors occurring
59 times. The model proposed in this paper is significantly
better than the traditional logistic regression model, and also
outperforms other penalized logistic regression models.

Then their sensitivity, specificity, and overall accuracy were
analyzed.

Table 2 shows the results of analyzing the sensitivity, speci-
ficity, and overall accuracy of the six models. It can be seen
that the overall accuracy rate of traditional logistic regression
model is 0.726, while the overall accuracy rate of this paper’s
algorithm is 0.767, which is obviously better than that of tradi-
tional logistic regression.The accuracy rates of Ridge, Lasso,
and Elastic Net are lower than that of traditional logistic
regression, which are 0.696, 0.696, and 0.716, respectively,
which means that the prediction accuracy is not necessarily
improved just because a penalty term is added to the original
function. will be improved.

Because the overall accuracy is the simplest index to eval-
uate the prediction, but it cannot fully reflect the loss corre-
sponding to the two types of errors. Therefore, the ROC curve
is introduced to evaluate the accuracy of prediction, which
mainly utilizes different thresholds to calculate the sensitivity
and specificity, and draws the ROC curve for evaluating the
prediction accuracy.The area AUC under the ROC curve eval-
uates the classification effect of the classifier: the larger the
AUC is, the better the classification effect is. When AUC = 1,
the classifier is nearly perfect, and accurate prediction classes
can be obtained no matter what threshold is set when using
this classifier prediction model. When 0.5 < AUC < 1, the
classifier is better than random guessing. When AUC=0.5, the
classifier performs as bad as random guessing. When AUC <
0.5, the classifier performs worse than random guessing.

Figure 2 shows the ROC curves of the six models predicting
the rise and fall of the international Brent crude oil price. From
the figure, it can be seen that the AUCs of the traditional logis-
tic regression model, Ridge model, Lasso model, EN model,
MCP model and this paper’s model are 0.753, 0.63, 0.758,
0.779, 0.781, and 0.787, respectively.The AUC of this paper’s
improved logistic regression model is higher than that of the
traditional logistic regression model by 0.034, which is also
significantly higher than that of the other penalized logistic
regression models. Combined with the overall accuracy in
Table 2, it can be concluded that the improved logistic regres-
sion model of this paper with technical indicators performs
better than the traditional logistic regression, ridge regression,
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Logistic 1(Observed rise) 2(Observation fall) Ridge 1(Observed rise) 2(Observation fall)
1(Forecast to rise) 202 96 1(Forecast to rise) 168 68
2(Forecast to fall) 62 186 2(Forecast to fall) 106 194

Lasso 1(Observed rise) 2(Observation fall) Elastic Net 1(Observed rise) 2(Observation fall)
1(Forecast to rise) 180 79 1(Forecast to rise) 199 88
2(Forecast to fall) 93 182 2(Forecast to fall) 74 173

MCP 1(Observed rise) 2(Observation fall) This algorithm 1(Observed rise) 2(Observation fall)
1(Forecast to rise) 207 88 1(Forecast to rise) 227 76
2(Forecast to fall) 66 173 2(Forecast to fall) 59 199

Table 1: Type ii confusion matrix

Evaluation criteria Logistic Ridge Lasso Elastic Net MCP This algorithm
Sensitivity 0.791 0.624 0.675 0.751 0.783 0.783
Specificity 0.663 0.764 0.717 0.68 0.68 0.749

Overall accuracy 0.726 0.696 0.696 0.716 0.733 0.767

Table 2: The analysis results of sensitivity, specificity and
overall accuracy

Time P1:(0,4) P2:(4,10) P3:(10,15) P4:(15,+∞)
4:00 0.54287 0.43627 0.07457 0.05021
8:00 0.58417 0.38404 0.07913 0.05713
12:00 0.61282 0.37253 0.06579 0.05383
16:00 0.57195 0.4012 0.07352 0.05777
20:00 0.57195 0.40078 0.07944 0.05234
24:00 0.63585 0.36432 0.06949 0.03575

Average 0.58666 0.39321 0.07362 0.05117

Table 3: The original oil price forecast of natural disasters

Lasso and elastic net prediction with technical indicators, and
performs better in predicting the upward and downward trend
of the crude oil price, and the effectiveness of the improved
algorithm of the logistic regression of this paper is verified.

B. Crude oil price forecasting during contingencies

In this paper, the improved logistic regression model is used
to make short-term predictions of crude oil prices for different
types of emergencies, and the different price ranges and prob-
abilities of crude oil prices that may occur in the next 24 hours
are given.

Table 3 shows the results of crude oil price forecasts in
the event of a natural disaster. As can be seen from Table 3,
when natural disasters occur, the probability that international
crude oil prices will fluctuate between 0∼4 US dollars in
the next 24 hours is the largest, with an average probability
of 0.58666. The second is a fluctuation of 4∼10 US dollars,
with an average probability of 0.39321. The probability of a
fluctuation of more than $15 is the smallest, with an average
probability of 0.05117.

Table 4 shows the results of crude oil price forecasts when
important data exceeds expectations. As can be seen from Ta-
ble 4, when economic data, monetary data, crude oil produc-
tion and sales, inventories and other indicators are extremely
inconsistent with expectations, the probability of international
crude oil prices fluctuating between 4∼10 US dollars in the
next 24 hours is the largest, with an average probability of
0.55345. The second is the fluctuation of 0∼4 US dollars,
with an average probability of 0.37628. The probability of a

Time P1:(0,4) P2:(4,10) P3:(10,15) P4:(15,+∞)
4:00 0.41749 0.51214 0.07294 0.04814
8:00 0.36751 0.55111 0.07733 0.05477
12:00 0.35649 0.57814 0.06448 0.05161
16:00 0.38393 0.53958 0.07192 0.05539
20:00 0.38352 0.53958 0.07763 0.05018
24:00 0.34864 0.59986 0.06805 0.03427

Average 0.37628 0.55345 0.07202 0.04906

Table 4: The original oil price forecast for important data

fluctuation of more than $15 is the smallest, with an average
probability of 0.04906.

IV. Conclusion
This paper USES improved logical regression algorithm to
predict international crude oil market, and compares the pre-
dictive energy of five other logical regression models, and
draws the following conclusions:

1) After the training of the data set, the traditional logistic
regression model predicts that the crude oil price will
rise for a total of 298 times, and actually rises for
202 times and falls for 96 times. The improved logistic
regression algorithm in this paper predicts rise a total of
303 times, the actual rise up to 227 times, the prediction
error 76 times. The algorithm in this paper clearly pro-
vides more trading opportunities and a higher prediction
success rate.

2) The overall accuracy of traditional logistic regression
model is 0.726, while the overall accuracy of this pa-
per’s algorithm is 0.767, which is obviously better than
traditional logistic regression.The accuracy of Ridge,
Lasso, and Elastic Net is lower than that of traditional
logistic regression, which is 0.696, 0.696, and 0.716,
respectively, which means that it is clear that not by
adding a penalty term to the original function the pre-
diction accuracy is bound to be improve.

3) The AUCs of the traditional logistic regression model,
Ridge model, Lasso model, EN model, MCP model
and this paper’s model are 0.753, 0.63, 0.758, 0.779,
0.781, 0.787, respectively, whereas this paper’s model
is higher than the traditional logistic regression model
by 0.034, which is significantly higher than other pe-
nalized logistic regression models. This paper’s model
performs better in predicting the rising and falling trend
of crude oil prices, and the effectiveness of the improved
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Figure 2: ROC curve predicting brent crude

algorithm is verified.
4) When natural disaster-type emergencies occur, the prob-

ability that the international crude oil price will keep
fluctuating between 0 and 4 U.S. dollars in the next
24 hours is the greatest, with an average probability
of 0.58666. And when economic data, monetary data,
crude oil production and sales, and stockpiles and other
indexes are extremely out of line with the expectations,
the probability that the international crude oil price will
keep fluctuating between 4 and 10 U.S. dollars in the
next 24 hours is the greatest, with an average probability
of 0.55345.
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